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Abstract

This paper uses an axiomatic foundation to create a new measure for the cost of
learning that allows for multiple perceptual distances in a single choice environment
so that some events can be harder to differentiate between than others. The new
measure maintains the tractability of Shannon’s classic measure but produces richer
choice predictions and identifies a new form of informational bias significant for welfare
and counterfactual analysis.1

1 Introduction

Inn many choice environments it is costly for agents to learn about the options

that they face because it takes time to acquire and process information. Understand-

ing how agents learn in such environments is crucial because partially informed choices

have serious implications for revealed preference analysis, which makes welfare and

1Special thanks to Rahul Deb for all of the support. I would also like to thank Yoram Halevy,
Marcin Peski, Carolyn Pitchik, and Colin Stewart, for their helpful advice.
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counterfacutal analysis more difficult.

The standard technique for quantifying the cost of learning in models of rational

inattention (RI) is Shannon Entropy (Sims, 2003). Shannon Entropy has an axiomatic

foundation, is grounded in the optimal coding of information, and provides a tractable

and flexible framework with which to study agent behavior (Shannon, 1948).

While Shannon Entropy has proven to be a valuable tool, it does have limitations

in economic environments as they are not what it is designed for. It is natural to

think that it should be, for instance, more difficult to differentiate between outcomes

that are more similar. Differentiating between two types of black tea should be more

difficult than differentiating between water and coffee. Shannon Entropy, however,

does not allow for different outcomes to be more or less similar than each other.

Without a mechanism to allow for what is referred to in the literature as ‘perceptual

distance,’2 the choice behavior predicted by Shannon Entropy can differ from observed

behavior, as is discussed in Example 1 in Section 2.1, which can limit the effectiveness

of Shannon Entropy in empirical settings.

This paper proposes five axioms that are similar to Shannon’s original axioms

(1948) in that they focus on the cost of answering simple questions, questions that

can be represented by partitions of the state space. Taken together, the five axioms

in this paper are weaker than Shannon’s axioms (1948) because they relax Shannon’s

assumption that all partitions are, what we refer to in this paper as, ‘learning strategy

invariant’. By allowing for some partitions to not be learning strategy invariant we

incorporate perceptual distance into our new measure for the cost of information,

which we call Multisource Shannon Entropy (MSSE).

Though the axioms in this paper discuss an agent learning through simple par-

titions of the state space, we need not constrain the agent to learn in such a fashion,

and can use MSSE to measure the cost of information in a more general setting where

the agent can choose any signal structure they desire, as is typical in the literature

2If two outcomes are more similar it is said that they have less perceptual distance between them.
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on RI. This is because MSSE can be viewed as a measure of total uncertainty, and,

as such, the cost of an arbitrary signal can simply be measured as the difference

between the total uncertainty before and after the signal is realized, as is frequently

done with Shannon Entropy in models of RI. This paper shows that, when used in

such a fashion, MSSE maintains much of the desired tractability and flexibility of

Shannon’s classic measure when incorporated into a model of RI, but also predicts

behavioral patterns that have been identified as problematic for Shannon Entropy.

MSSE further identifies an informational bias in random utility (RU) models

that should be considered a natural consequence of different perceptual distances in

the same choice environment, as is demonstrated by Example 2 in Section 2.2. While

other papers study measures of information that feature perceptual distance (e.g.,

Hébert & Woodford, 2017), this paper is the first to identify an informational bias

in RU models that is generated by the presence of different perceptual distances in

the same choice environment. Unlike the informational bias identified with Shannon

Entropy (Matějka & McKay, 2015), this type of informational bias cannot be iden-

tified in the unconditional choice probabilities of the agent, and thus presents a new

challenge for welfare and counterfactual analysis.

1.1 Literature Review

Shannon Entropy has been used in several contexts to demonstrate informa-

tional biases in RU models. Matějka and McKay (2015) use Shannon Entropy in

a model of RI to demonstrate the potential for informational biases in multinomial

logit, while Steiner, Stewart, and Matějka (2017) use Shannon Entropy in a model

of RI to demonstrate the potential for a similar bias in dynamic logit. These results

are significant for those who wish to fit RU models because, while observational data

may coincide with the assumptions of a fitted RU model, informational biases can

potentially invalidate counterfactual and welfare analysis, two common goals of such

a fitting.
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The Shannon RI model has also led to a number of predictive successes. Acharya

and Wee (2019) show that using Shannon Entropy to model firms as rationally inat-

tentive results in a better fitting of labor market dynamics after the great depression.

Dasgupta and Mondria (2018) show that using Shannon Entropy to model importers

as rationally inattentive results in novel predictions that are supported by trade data.

Ambuehl, Ockenfels, and Stewart (2019) experimentally verify predictions of Shannon

Entropy in environments where agents are rationally inattentive to the consequences

of participating in different transactions.

Perhaps as a response to the success Shannon Entropy has enjoyed, several

recent papers have noted that Shannon Entropy may be a poor measure of the cost of

acquiring information in some environments (Caplin, Dean, & Leahy, 2017; Morris &

Yang, 2016) because it lacks what is called “perceptual distance” (Caplin et al., 2017,

p. 39). As was alluded to previously, these papers argue that (i) more similar outcomes

(outcomes that have less perceptual distance between them) should be more difficult

to differentiate between, and (ii) when this property is missing, predicted behavior

can differ signficantly from the type of behavior that it would seem natural to expect

(Morris & Yang, 2016).

An ad hoc group of cost functions that generalize Shannon Entropy and allow

for different perpetual distances is provided by Huettner, Boyacı, and Akçay (2019).

In their paper, the different alternatives that the agent can choose between are allowed

to differ in how costly they are to learn about, i.e., how much perceptual distance

there is between realizations of alternatives’ values can differ across alternatives. The

group of costs functions developed by Huettner et al. (2019) are a strict subset of the

cost functions that can be defined with MSSE, and though they allow for different

perceptual distances, they are not capable of predicting the behavior we argue is

intuitive in Example 1 in Section 2.1 and is predicted by MSSE.

To better understand the relationship between the cost of learning and agent

behavior, a number of papers have studied axiomatic models of rational inattention.
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Different papers, however, choose to focus their axioms on different aspects of the

choice environment. Caplin et al. (2017), for instance, develop axioms that focus on

the choice behavior of an agent after they expend effort to learn about the state of

the world. In contrast, de Oliveira (2014) and de Oliveira, Denti, Mihm, and Ozbek

(2017) develop axioms that focus on an agent’s preferences over choice menus before

they expend effort to learn about the state of the world. Broadly, these papers aim to

understand what implications rational agent behavior has for the form of information

cost functions.

Ellis (2018) features axioms that focus on choice behavior and studies the im-

plications for information cost functions, but further assumes that the agent learns

by picking a partition of the state space. While MSSE uses the cost of learning the

realized event of partitions as a primitive, the model studied in this paper does not

constrain agents so that they must learn using partitions of the state space, and it

can be shown that in a model of RI with MSSE it is never optimal for the agent to

choose an information strategy that is equivalent to a partition of the state space

(Walker-Jones, 2019).3

Closer in nature to the work done in this paper, Pomatto, Strack, and Tamuz

(2019) develop axioms that focus directly on the costs of information. Axioms that

focus on costs of information are interesting because intuitive properties for costs

of information can lead to unintuitive agent behavior that is compelling given real-

world observations (Gigerenzer & Todd, 1999), but is often mistaken for irrational

when axioms that appear rational are imposed on behavior. MSSE, for instance,

predicts ‘non-compensatory’ behavior, whereby changing an option so that it is more

valuable to the agent can result in a lower chance of it being selected, as is discussed

by (Walker-Jones, 2019). This type of behavior raises important questions for welfare

and counterfactual analysis, making effective policy design more challenging.

Unlike the work of Pomatto et al. (2019), which features axioms that are con-

3This is true whenever the agent does some learning, and they have a positive probability of a
posterior that is different than their prior.
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cerned with probabilistic experiments that can result in different outcomes in the

same state of the world, this paper’s axioms are concerned with deterministic exper-

iments (questions) that always result in the same outcome in a given state of the

world, and contradict the form of constant marginal cost assumed in their paper.

1.2 Organization of Paper

The remainder of the paper is organized as follows: Section 2 introduces Shan-

non Entropy, discusses models of RI, and provides motivating examples. Section 3

proposes five new axioms, and uses them to develop a more flexible cost of acquir-

ing information, MSSE, which features perceptual distance. Section 4 uses MSSE

as a benchmark with which to price inattentive information strategies in a model

of RI, and discusses the resultant agent behavior. Section 5 discusses the relation-

ship between RU models and the agent behavior found in Section 4, and revisits the

motivating examples from Section 2.1 and Section 2.2. Section 6 concludes.

2 Rational Inattention and Shannon Entropy

What follows is intended to introduce the Shannon Entropy model of rational

inattention to those that are not familiar with it. If you are familiar with said model,

you can skip to Section 2.1.

In the rational inattention (RI) literature, learning by the agent is typically

modelled as the choice of a signal structure. The agent chooses the probability of

receiving different signals in different states of the world. Receiving a signal updates

the agent’s belief about the state of the world, giving them a more informed posterior

belief. More informative signal structures are more costly for the agent, but allow

them to make a more informed decision about which option to select.

Suppose that the uncertainty faced by the agent is described by a measurable

space (Ω, F), where Ω is a finite set of possible states of the world (the state
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space), and F is the set of events generated by Ω (the power set of Ω). We call

µ : F → [0, 1], which assigns probabilities to events, the prior distribution of the

agent.

Suppose that an agent who has stopped learning must make a selection from a

set of options, denoted N = {1, . . . , N}. Each option, n ∈ N , in each state of the

world, ω ∈ Ω, has a (finite) value to the agent vn(ω).

The agent’s problem is to maximize the expected value of the selected option less

the cost of learning. They do this by choosing an information strategy F (s, ω) ∈

∆(R × Ω), which is a joint distribution between s, the observed signal, and the

states of the world.4 The only restriction on the information strategy is that the

marginal, F (ω) : F → R+, must equal the prior µ. Alternatively, an agent can select

a probability measure F (s|ω) : R → R+ for each ω ∈ Ω, which, combined with µ,

determine both F (s, ω) and the posterior F (ω|s). It is a property of the cost function

for information derived in this paper, as is true with Shannon Entropy, that if F (s, ω)

is optimal, then the agent is done learning after a single signal s. After the signal is

realized, the agent simply picks the action with the highest expected value:

a(s|F ) = arg max
n∈N

EF (ω|s)[vn(ω)].

Ignoring the cost of learning momentarily, the value to the agent of receiving a signal

s, which induces posterior F (ω|s), is then:

V (s|F ) = max
n∈N

EF (ω|s)[vn(ω)].

Let the expected cost of a particular information strategy, given the agent’s

prior, be denoted C(F (s, ω), µ). We describe the form of the cost functions studied

4The decision to allow s to be any real number is rather arbitrary. This is a much richer signal
space than is required in practice. We show later that an optimal strategy only results in one of at
most N different signals s being observed.
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in this paper in Section 4. The agent’s problem can thus be written:

max
F∈∆(R×Ω)

∑
ω∈Ω

∫
s

V (s|F )F (ds|ω)µ(ω)−C(F (s, ω), µ),

such that ∀ω ∈ Ω :

∫
s

F (ds, ω) = µ(ω).

The choice behavior the agent exhibits depends on the cost function for infor-

mation. Shannon Entropy is a measure of uncertainty with an axiomatic foundation

that can be used to assign costs to information. If we are given a partition of the

possible states of the world P = {A1, . . . , Am}, and probability measure µ over these

events, the uncertainty about which event has occurred, as measured by Shannon

Entropy, is defined:5

H(P , µ) = −
m∑
i=1

µ(Ai) log(µ(Ai)). (1)

The convention used here is to set 0 log(0) = 0.

If an agent has prior µ about the state of the world, and their beliefs are updated

to the posterior µ(·|s) after they receive a signal s, then there is a change in the

uncertainty as measured by Shannon Entropy. In the Shannon model of RI, the cost

of an information strategy F (s, ω) is measured as the expected reduction in total

uncertainty as measured by Shannon Entropy:

E
[
H(P , µ)−H(P , µ(·|s))

]
,

where P = {{ω1}, {ω2}, . . . , {ωn}}. Bayes rule, and the nature of Shannon Entropy,

guarantee that every potential information strategy has a weakly positive cost.

5This measure is only unique up to a positive multiplier.
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Table 1: Example 1
State: ω1 ω2 ω3 ω4

Balls in State: 60 Blue & 40 Red 51 Blue & 49 Red 49 Blue & 51 Red 40 Blue & 60 Red
Probability of State: 1/4 1/4 1/4 1/4

Value of selecting option 1: y y -y -y
Value of selecting option 2: 0 0 0 0

2.1 Example 1: Perceptual Distance and Problems with Pre-

dictions

Caplin et al. (2017, p. 19) show that Shannon Entropy results in choice behavior

that satisfies “invariance under compression.” That is, when Shannon Entropy is used

to measure information, if there are two states of the world, ω1 and ω2, across which

payoffs are identical for each option (vn(ω1) = vn(ω2) ∀n ∈ N ), then the chance of

each option being selected is the same in ω1 and ω2. The invariance under compression

that is predicted by Shannon Entropy is, unfortunately, not found in many settings,

as is shown by the work of Dean and Neligh (2019). The intuition for why invariance

under compression may not be present in every choice environment is demonstrated

by the following example.

Consider an environment where an agent is faced with a screen that shows 100

balls, each of which is either red or blue. The agent is offered a prize that they may

either accept (option 1), or reject to get a payoff of zero (option 2). The agent is told

that if the majority of the balls on the screen are blue then the prize is y ∈ R++,

and if the majority of the balls on the screen are red then the prize is −y. Suppose

further that the agent is also told that there is a 1/4 chance of five different states of

the world in which there are either 40, 49, 51, or 60 red balls, as is described in Table

1.

The Shannon RI model, which imposes invariance under compression, predicts

that the agent has the same chance of selecting option 1 when there are 40 red balls as

when there are 49 red balls, and that the agent has the same chance of selecting option

1 when there are 60 red balls as when there are 51 red balls. This predicted behavior

is not intuitive because it should be easier for the agent to differentiate between the
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states that are more different (40 versus 60 red balls) than the states that are more

similar (49 versus 51 red balls). One should instead expect that the chance that

option 1 is selected is decreasing in the number of red balls, as is demonstrated by

the experiments of Dean and Neligh (2019), because it should be easier to determine

which color of ball constitutes the majority the more of that color ball there are.

Why does Shannon Entropy impose this type of behavior? In short, Shannon

Entropy results in invariance under compression because of Shannon’s third axiom

(Shannon, 1948). In the context of Example 1, let P = {{ω1}, {ω2}, {ω3}, {ω4}},

and P̃ = {{ω1 ∪ ω2}, {ω3 ∪ ω4}}, be two partitions of the state space. Shannon’s

third axiom requires that total uncertainty about the state of the world, which is the

uncertainty about which event in P has occurred, be equal to the uncertainty about

which event in P̃ has occurred, plus the expected amount of uncertainty that remains

about which event in P has occurred after we have learned which event in P̃ has

occurred. This equality means that the reduction in uncertainty caused by a signal is

equal to the reduction in uncertainty about which event in P̃ has occurred, plus the

expected reduction in uncertainty about which event in P has occurred given which

event in P̃ has occurred.

The agent is only concerned with which event in P̃ has occurred, as this fully

determines payoffs. Given which event in P̃ has occurred, the agent does not care

which event in P has occurred. If agent behavior is different in ω1 compared to

ω2, or ω3 compared to ω4, so that their behavior does not satisfy invariance under

compression, then the agent is, to an extent, differentiating between these states, and

paying for information that does not benefit them, and their information strategy is

thus not optimal.

While other information cost functions do not require that choice behavior sat-

isfies invariance under compression (Caplin et al., 2017; Morris & Yang, 2016), they

lack the tractability and flexibility of Shannon Entropy,6 which limits the potential

6Shannon Entropy has a number of mathematical properties that make it easy to use for predicting
behavior in a wide range of environments.
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for their application. This has led to the following open question: “what workable

alternative models allow for the complex behavioral patterns identified in practice?”

(Caplin et al., 2017, p. 2), a question that this paper attempts to answer.

2.2 Example 2: Perceptual Distance and Biases in Fitting

If different perceptual distances are present in the same choice environment, a

RU model may be susceptible to a form of informational bias that has not previously

been identified, as demonstrated by the following example. This is significant for

those who wish to conduct welfare or counterfactual analysis because there are many

economically significant examples where, for instance, one option is easier to learn

about, as in Example 2.

Consider a choice environment where an agent has two options: option 1 and

option 2, which can each be of high value H, or low value L < H, as is described in

Table 2. Assume, contrary to what is possible with Shannon Entropy, that learning

the value of option 1 is less costly than learning the value of option 2.7 For example,

perhaps the agent is interested in investing in one of two businesses that are a priori

identical except for the fact that one is local and easier to learn about, while the other

is foreign and harder to learn about. It is not difficult to come up with other similar

examples.

Because payoffs are symmetric, any knowledge about the value of option 1 has

the same value to the agent as the same knowledge about option 2. Further, the cost

of said information about option 1 is lower. As such, while the marginal benefit of

information about option 1 or option 2 is the same, the marginal cost of information

about option 1 is lower. We should thus expect research of a rational agent to be more

attentive to option 1. If the agent was deciding between investing in two businesses

7With Shannon Entropy it is not possible for the cost of learning the value of option 1 to differ
from the cost of learning the value of option 2. Each option realizes each of its two values with equal
probabilities, and with Shannon Entropy it is not possible to have different perceptual distances in
the same choice environment.
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Table 2: Example 2
State: ω1 ω2 ω3 ω4

Probability of State: 1/4 1/4 1/4 1/4
Value of selecting option 1: H H L L
Value of selecting option 2: H L H L

that are a priori identical, except one is local and easier to learn about, while the

other is foreign and harder to learn about, then we should expect the agent to be

more attentive to the local business.

If both option 1 and option 2 have realized their high value H, we should expect

that the agent is more likely to select option 1. Our intuition is that the agent should

be more attentive to option 1, and thus should be more cognisant of option 1’s high

value, and more likely to select it. Similarly, if option 1 and option 2 have both

realized their low value L, then we should expect that the agent is more likely to

select option 2.8

Because of this, if an econometrician, who does not know that the two options

have the same value distribution, tried to deduce the two values of option 1, H1 and

L1, and the two values of option 2, H2 and L2, using a multinomial logit regression,

they would decide that H1 is more than the true value H, and that L1 is less than

the true value L (as is shown rigorously in Section 5). Fitting thus falls prey to an

informational bias, undermining the value of any counterfactual or welfare analysis.

This type of bias has not previously been identified in the literature on RI.

Let Pr(n|ω) denote the probability that the agent selects option n in state ω. Let

Pr(n) =
∑

ω Pr(n|ω)µ(ω) denote the unconditional probability that option n is se-

lected. Matějka and McKay (2015) show that fitting of multinomial logit results in

the value of an option n to be biased by log(Pr(n) · N) in all states ω, where N

is the number of available options. The bias found by Matějka and McKay (2015)

can be identified by examining the unconditional choice probabilities of the agent

8Our intuition is that the agent should be more attentive to option 1, and thus should be more
cognisant of option 1’s low value, and less likely to select it.
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because the driving mechanism is that the cost of learning causes the agent to be

biased towards options that they have a higher chance of selecting a priori. The bias

previously found by Matějka and McKay (2015) is fundamentally different than the

bias demonstrated in this example because their bias does not allow for an option to

be over valued in some states and under valued in others, which is in contrast with

our setting where option 1 is over valued when it is of high value, and is undervalued

when it is of low value.

An econometrician who observes equal unconditional choice probabilities in this

environment, as is predicted in this setting by the model developed in this paper,

might be tempted conclude, based on the previous literature, that their analysis is

not susceptible to informational biases since each option has the same chance of being

selected a priori, so the bias of option n is log(Pr(n) ·N) = log(1
2
·2) = 0 ∀n, and thus

any counterfactual or welfare analysis that they conduct is valid. This conclusion may

not be correct given the results in this paper.

Further, RU models and RI models with Shannon Entropy can both be rejected

for RI with MSSE in this environment if we are able to alter the correlation between

the values of the two options. If a RU model describes the agent, then changing

the correlation between the values of the two options would not change the choice

behavior of the agent. If the behavior of the agent is instead described by MSSE,

then changing the correlation between the values of the two options would change

the choice behavior of the agent in individual states. This effect is because the total

information that can be acquired from learning the value of option 1 (the option that

is easier to learn about) changes with the correlation of the options’ values. Further,

if the above MSSE specification is correct, the unconditional choice probabilities of

the agent would remain constant when correlation is changed due to the symmetry of

the environment, as long as the agent is doing some learning.9 Finally, if the behavior

of the agent is instead described by Shannon Entropy, then the choice behavior in the

9The agent is doing some learning if their choice probabilities differ at all in states of the world
that are realized with positive probability.
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individual states could only change if the unconditional choice probabilities changed,

which is not the case with MSSE. With MSSE, since choice probabilities in a state

can be impacted by choice probabilities that are conditioned on some larger subset of

states, not only payoffs and unconditional choice probabilities, choice probabilities in

a state can change even when payoffs and unconditional choice probabilities do not.

3 Multisource Shannon Entropy (MSSE)

In this section we use axioms to develop this paper’s measure of uncertainty.

The goal of our axioms are to measure the total amount of uncertainty, which is the

expected cost to the agent of perfectly observing the state of the world. The measure

of total uncertainty that we develop can then be used to study a rationally inattentive

agent because the cost of a noisy information strategy can be taken to be the expected

reduction in total uncertainty, as is frequently done with Shannon Entropy in models

of RI. Thus, while this paper is interested in studying an inattentive agent that only

partially learns about the state of the world, this section discusses an attentive agent

that perfectly observes the state of the world.

3.1 Formal Setting

As was mentioned in Section 2, we are interested in an agent who is researching

a measurable space (Ω, F). Ω is a finite set of possible states of the world. F is the

set of events generated by Ω.

One natural way to think about an agent learning is through a series of questions

that have answers that are uniquely determined by the state of the world. These are

questions that you can answer if you know the state of the world. How do we model

such questions? A partition P of a state space Ω is a set of more than one disjoint

events in F whose union is Ω. Notice that our definition of a partition excludes trivial

partitions that only contain a single event.
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A question with multiple potential answers is thus equivalent to a partition

whenever the answer to the question is deterministically determined by the state of

the world. This equivalence occurs since every state space we consider has finite

possible states of the world, so every such question must have a finite number of

answers, and we can simply group states of the world based on the answer to the

question they produce. Because we are concerned with questions that have answers

that are deterministically determined by the state of the world, the words ‘question’

and ‘partition’ can be used interchangeably.

The simplest kind of question in this setting is a yes or no question. A yes or

no question is equivalent to a binary partition Pb of Ω, which we define as a set

of two events, Pb = {A1, A2}, such that A1 ∪ A2 = Ω, and A1 ∩ A2 = ∅. The two

phrases ‘binary partition’ and ‘yes or no question’ can thus be used interchangeably.

If ω ∈ Ω is the state of the world, let the realized event of the partition

P = {A1, . . . , Am} be denoted by P(ω), that is P(ω) = Ai ∈ {A1, . . . , Am} iff

ω ∈ Ai. Given a probability measure µ : F → R+, and some partition P , let

C(P , µ) ∈ R+ denote the cost of learning the realized event P(ω) of P . C(P , µ), the

cost of answering ‘What is the realized event of P?’, given the agent’s prior belief, is

the basic building block of this paper.

A learning strategy, S = (P1, . . . , Pn), is a list of partitions whose realized

events are successively observed by the agent such that if Pi, Pj ∈ S, and i 6= j, then

Pi 6= Pj. A ‘learning strategy’ is thus ‘a series of questions’, and the two phrases can

be used interchangeably. If a learning strategy consists of only binary partitions, we

call it a binary learning strategy, and denote it Sb = (Pb1, . . . , Pbn). The order

of the questions in a learning strategy is important, and changing the order results

in a different learning strategy. If, for instance, some questions are more costly for

the agent to answer, and help to identify states that are seldom observed, then it

may seem efficient for a learning strategy to leave these questions towards the end.

The order of the events in a partition, in contrast, is not important, and switching

15



the order in which the events in a partition are listed does not result in a different

partition.

Define C(S, µ), the expected cost of a learning strategy S = (P1, . . . , Pn), given

a probability measure µ, to be the sum of the expected costs of each of the questions

in S:

C(S, µ) = C(P1, µ) + E
[
C
(
P2, µ(·|P1(ω))

)
+ · · ·+ C

(
Pn, µ(·|∩n−1

i=1 Pi(ω))
)]
.

Our definition of C(S, µ) thus imposes a form of constant marginal cost onto learn-

ing strategies because over the course of their learning strategy the agent does not

fatigue, nor do they gain experience with research and become better at learning: all

that matters for determining the cost of each question are the beliefs of the agent

immediately before the question is answered, and not how much has previously been

learned.

If P = {A1, . . . , Am} is a partition, let σ(P) denote the σ-algebra generated

by P , which is the smallest σ-algebra that contains all the events A1, . . . , Am in P

(which is also the power set of the events in P , since P is a partition). In general, if

B is any collection of partitions, let σ(B) denote the σ-algebra generated by B,

which is the smallest σ-algebra containing all the events in each of the partitions in

B. Since a learning strategy S = (P1, . . . , Pn) is a collection of partitions, we thus

use σ(S) to denote the σ-algebra generated by S.

Sometimes a single question can be as informative as several questions. We say

a learning strategy S is equivalent to a partition P if σ(S) = σ(P), and we say

that a series of questions is equivalent to a particular question if the learning strategy

that represents the series of questions is equivalent to the partition that represents

the particular question. What σ(S) = σ(P) means intuitively is that, for any prior

probability measure µ : F → R+, observing the answers to the series of questions in

S always leads to the same posterior as observing the answer to the question ‘what

is the realized event of the partition P?’. We can thus read σ(S) = σ(P) as saying
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that, for all priors, S and P provide the same amount of information to the agent.

Let S(P) = {S|σ(S) = σ(P)} denote the set of learning strategies that are equivalent

to P , and let Sb(P) = {Sb|σ(Sb) = σ(P)} denote the set of binary learning strategies

that are equivalent to P . We say a partition P of a state space Ω is coarser than

a partition P̃ of the same state space Ω, if each event in P corresponds to a union

of events in P̃ . If a partition P̃ is in a learning strategy S which is equivalent to P ,

then notice that P̃ must be coarser than P .

3.2 Axioms

What form should a cost function for information take? This difficult question

does not have an obvious answer, so this paper takes an axiomatic approach. The

axioms make explicit the structure that is imposed on our cost function. Each axiom

is meant to be normatively appealing, and can be separately evaluated in different

contexts, either empirically, or through introspection, to determine how appropriate

it is. Further, the axioms help demonstrate to those that are familiar with Shannon’s

original axioms (1948) the differences between MSSE and standard Shannon Entropy.

When an agent learns in an inattentive fashion, and only acquires some of

the available information, they reduce the amount that remains to be learned, and

thus reduce the subsequent cost of learning the state of the world. The cost of the

inattentive learning done by the agent can thus simple be measured as the reduction

in the cost of learning the state of the world, as subsequent sections discuss,10 as long

as we can establish the cost of learning the state of the world for different probability

measures.

Thus, while the learning of an agent is frequently inattentive, and this paper

wishes to study environments where the agent only partially learns about the state

of the world, this section discusses an attentive agent that tries to perfectly observes

10We argue later in the paper that the application of Shannon Entropy can be interpreted in this
same fashion.
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the state of the world. We do this because we want our axioms to be normatively

appealing, and we find axioms about perfectly observing the state of the world to

be a more intuitive, and hence easier to evaluate normatively, than axioms that

focus directly on inattentive behavior, describing costs of different kinds of stochastic

experiments. Another interpretation of this strategy is that, while the primitive of

our model is the cost of learning the realized events of partitions, and the agent could

choose to learn through such partitions of the state space, we do not constrain the

agent’s choice of information strategy so that they must learn through such partitions,

and they can instead choose a noisy signal structure if they desire.

Before we introduce our axioms, we pause to discuss learning strategy invariance,

a concept that helps us to make it explicit what we are assuming with our axioms,

and that is the central pillar of Shannon’s (1948) axioms. In general, a particular

question P , and an equivalent series of questions S, may produce different expected

costs depending on what questions are selected, and how they are ordered in S. A

given question P , however, may have the peculiar property that, given any prior, all

series of questions that are equivalent to it have the same expected cost. If a question

has this strong property, we say it is learning strategy invariant. Formally, we say a

partition P is learning strategy invariant, if for each probability measure µ, the

expected cost C(S, µ) is the same for every learning strategy S that is equivalent to

P .

In many environments there are questions that are not learning strategy invari-

ant. Consider the environment described in Example 2 in Section 2.2. In this context,

let A1 = {ω1, ω2}, A2 = {ω1, ω3}, Pb1 = {A1, A
c
1}, and Pb2 = {A2, A

c
2}. Notice that

observing the realized event of Pb1 is equivalent to learning the value of option 1,

and observing the realized event of Pb2 is equivalent to learning the value of option

2. Now, let P3 = {{ω1}, {ω2}, {ω3}, {ω4}} denote our partition of the state space.

Notice that the learning strategy Sb = (Pb1, Pb2) is equivalent to P3, because if we

answer ‘What is the value of option 1?’, and then answer ‘What is the value of option
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2?’, we have observed the state of the world.

Based on our discussion in Section 2.2, however, we should expect that P3 may

not be learning strategy invariant. Consider S̃b = (Pb2, Pb1), which is also equivalent

to P3. If the value of option 1 and option 2 were perfectly correlated, then observing

the value of one of them would tell you the value of the other. The cost of Sb would

then be the cost of observing the value of option 1, which we assumed to be less than

the cost of observing the value of option 2, which is then the cost of S̃b.

A set of partitions that are certainly learning strategy invariant, in contrast, is

the set of binary partitions. If Pb is a binary partition, then Pb is learning strategy

invariant because the only learning strategy S such that σ(S) = σ(Pb), is S = (Pb).

Thus, for any µ, all learning strategies S such that σ(S) = σ(Pb) have the same

expected cost C(S, µ) = C(Pb, µ).

We now begin to state the five axioms required to achieve this paper’s measure

of uncertainty:

Axiom 1 (Measurement): Given a binary partition Pb = {A1, A2}, C(Pb, µ) is de-

termined by µ(A1) and µ(A2), and we can thus write C(Pb, µ) = C(Pb, µ(A1), µ(A2)).

In plain language, Axiom 1 says that the expected cost of the yes or no question

represented by Pb should be fully determined by the chance that the answer is yes and

the chance that the answer is no. If we know the yes or no question being asked, and

the the chance of each of its answers, then we know the expected cost of answering

the question, we do not require any additional information.

We begin to use our axioms by showing that if P is a leaning strategy invariant

partition comprised of three or more events, then C(P , µ) is constant with respect to

permutations of the probability measure µ on P . If P = {A1, . . . , Am} is a leaning

strategy invariant partition, we say that µ̃ is a permutation of µ on P if there is a

bijection π : {1, . . . , m} → {1, . . . , m} such that ∀i ∈ {1, . . . , m}, µ(Ai) = µ̃(Aπ(i)).

Lemma 1. If a partition P = {A1, . . . , Am} is learning strategy invariant, with m ≥
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3, and C satisfies Axiom 1, then C(P , µ) is fully determined by µ(A1), µ(A2), . . . ,

and µ(Am), and if µ̃ is a permutation of µ on P , then C(P , µ) = C(P , µ̃).

Proofs for results in Section 3 and can be found in Appendix 1

We next show that if a partition P = {A1, . . . , Am} is learning strategy invari-

ant with m ≥ 3, structure is imposed onto C(Pb, µ) for all Pb coarser than P . As it

turns out, this structure is quite helpful.

Lemma 2. If a partition P = {A1, . . . , Am} is learning strategy invariant with

m ≥ 3, and Pb is a binary partition coarser than P , then if C satisfies Axiom 1, then

for all (p1, p2, p3) such that p1, p2, p3 ∈ [0, 1) and p1 + p2 + p3 = 1:

C(Pb, p1, 1− p1) + (1− p1)C
(
Pb, p2

p2 + p3

,
p3

p2 + p3

)

= C(Pb, p2, 1− p2) + (1− p2)C
(
Pb, p1

p1 + p3

,
p3

p1 + p3

)
= C(Pb, p3, 1− p3) + (1− p3)C

(
Pb, p1

p1 + p2

,
p2

p1 + p2

)
.

Our next axiom, Axiom 2, is concerned with the subjective nature of the state

space. In practice, ‘the’ state space Ω is determined by the researcher and the ap-

plication, and referring to it as ‘the’ state space is typically a misnomer. Sometimes

the researcher uses just enough states so that the payoff function is measurable, as

in Example 2, and other times the researcher includes more states than are required

for measuring the payoff function because it is deemed relevant to the agent, as in

Example 1. In Example 1, however, the four ‘states’ we describe are not actually

states, they are events in some richer underlying state space. Two realizations of the

‘state’ of the world in which 51 blue balls appear may differ from each other because

the balls may appear in a different order, which may be relevant for the agent’s cost

of learning.11 Further, a change in the payoff function may necessitate the description

11Imagine that the 100 balls from Example 1 are displayed on the screen in ten rows of ten, and
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of a richer state space.

While our description of the state space can change, the reality of the agent

does not, and the cost of asking certain questions should not change based on the

subjective modelling decisions of the researcher. Thus, when we consider the cost

of learning the outcomes of a binary partition Pb, if these costs do not satisfy the

equations outlined in Lemma 2, then we are ruling out that a finer state space could

be defined with a learning strategy invariant partition with three or more states that

our binary partition Pb is coarser than. This notion is formalized in Axiom 2.

Axiom 2 (Subdivision): Given a binary partition Pb, and a vector of probabilities

(p1, p2, p3) such that p1, p2, p3 ∈ [0, 1) and p1 + p2 + p3 = 1, we assume C is such

that it allows for there to be a partition comprised of three of more events which Pb

is coarser than, which is to say:

C(Pb, p1, 1− p1) + (1− p1)C
(
Pb, p2

p2 + p3

,
p3

p2 + p3

)

= C(Pb, p2, 1− p2) + (1− p2)C
(
Pb, p1

p1 + p3

,
p3

p1 + p3

)
= C(Pb, p3, 1− p3) + (1− p3)C

(
Pb, p1

p1 + p2

,
p2

p1 + p2

)
.

Next we make a very weak assumption about the continuity of our cost function

on binary partitions. As such, our axioms do not rule out discontinuities in our

cost function, but later results show that our cost function is continuous on binary

partitions. This is because the property described in Axiom 2 is only compatible

with a cost function that is either discontinuous at every point or continuous at every

point, on each binary partition.

that 51 are blue. If the position of the red and blue balls appears random, it would seem intuitive
that it is more costly for the agent to learn whether or not the the majority of the ball are blue
compared to the setting where the top five rows all consist of ten blue balls, and in the bottom ten
rows there is one blue ball and the rest are red.
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Axiom 3 (Weak continuity): Given a binary partition Pb, there is a probability

p ∈ [0, 1] such that C is continuous at (p, 1− p) when applied to Pb.

As was alluded to, a cost function on binary partitions only satisfies Axiom 1

and Axiom 2 if it is either continuous everywhere or discontinuous everywhere. Thus,

if a cost function on binary partitions satisfies our first three axioms, it is continuous

everywhere, as is formalized by Lemma 3, which further shows that the cost function

is permutation invariant on binary partitions.

Lemma 3. If C satisfies Axiom 1, Axiom 2, and Axiom 3, then for each binary

partition Pb, C(Pb, p, 1−p) is continuous in p, and C(Pb, p, 1−p) = C(Pb, 1−p, p),

for each p ∈ [0, 1].

Continuity and symmetry are not the only helpful properties imposed onto our

cost function by our axioms. On binary partitions, our cost function is also non-

decreasing if the chance of whichever event is less likely increases.

Lemma 4. If C satisfies Axiom 1, Axiom 2, and Axiom 3, then for each binary

partition Pb, and for each p ∈ [0, 1
2
), C(Pb, p, 1 − p) is non-decreasing with small

increases in p.

Our first three axioms do not rule out that learning with a binary partition can

be costless. We, however, wish to study a costly learning environment, so any time

answering a question changes the agent’s beliefs we think it should be costly to the

agent.

Axiom 4 (Costly Learning): Given a binary partition Pb, if p ∈ (0, 1), then

C(Pb, p, 1− p) > 0.

We are now ready to show that the cost of learning with a learning strategy

invariant partition is dictated by Shannon Entropy.
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Lemma 5. If a partition P is learning strategy invariant, and C satisfies Axiom 1,

Axiom 2, Axiom 3, and Axiom 4, then there exists a multiplier λ(P) ∈ R++, such

that for all probability measures µ: C(P , µ) = λ(P)H(P , µ), where H is Shannon’s

standard measure of entropy (1948), defined in equation (1).

Underlying each learning strategy invariant partition is some information source

that allows the agent to differentiate between the events that comprise the partition.

Shannon (1948) imposes learning strategy invariance onto all partitions of Ω, which

implies that all partitions have the same costs associated with them (there is a λ > 0

such that λ(P) = λ for all partitions P of Ω), and so it is without loss to think of the

agent as learning from a single information source that allows them to differentiate

between the different states of the world. With MSSE, in contrast, different learning

strategy invariant partitions are allowed to have different costs associated with them

(λ(P) may differ depending on the learning strategy invariant partition P), and thus

it is natural to think of the agent as learning different pieces of information from

different sources depending on which source allows them to acquire the information

at the lowest costs, as is formalized by Theorem 1. This interpretation is how MSSE

gets its name.

Shannon’s (1948) key axiom, his third axiom, assumes that all partitions of the

state space are learning strategy invariant, and further, that the cost function derived

is defined for vectors of arbitrary length, even though Shannon also uses a finite state

space to derive his cost function. In addition to this axiom, Shannon has two other

axioms, one of which imposes continuity onto his cost function (his axiom 1), and

another that deals with the cost of differentiating between a greater number of equally

likely states (his axiom 2). As it turns out, there is a great deal of redundancy in

Shannon’s axioms, as is demonstrated by this paper’s axioms.

As a result, Shannon’s third axiom is the only axiom that it is substantive

to relax. Shannon’s second axiom does not have any impact as long as leaning with

binary partitions is assumed to be costly when there is uncertainty about their realized
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event (as we do in Axiom 4). Removing his first axiom only has an impact if we allow

for a cost function that is discontinuous at every point when applied to a binary

partition, which would render it too complex and intractable for practical application.

As a result, if one wishes to generalize Shannon Entropy to achieve a more flexible

but still tractable tool with which to study an environment where learning is always

costly, it must be Shannon’s third axiom that is weakened.

Our last axiom, Axiom 5, asserts that it is without loss for us to think about an

agent learning through binary partitions. Since binary partitions are learning strategy

invariant, it is thus without loss for us to consider the agent learning through learning

strategy invariant partitions, and Lemma 5 becomes quite useful.

Axiom 5 (Efficient Yes or No Questions): Given a partition P , for all probability

measures µ:

C(P , µ) ≥ min
Sb∈Sb(P)

C(Sb, µ).

In plain language, Axiom 5 says that for any question P , there are a series of

yes or no question Sb, that provide the same amount of information as P , and can

be asked instead for the same cost or less. This assertion allows us to focus on series

of yes or no questions without loss when we try to determine the cost to the agent of

learning the state of the world, which is supported by research in the psychology and

psychophysics literatures.

Eye tracking analysis shows that when agents are faced with multiple options,

they successively compare pairs of the options along a single attribute dimension

(Noguchi & Stewart, 2014, 2018). This suggests that, in practice, agents are breaking

their learning into a number of smaller queries. Further, in the psychology literature

these pairwise comparisons are frequently modelled as ordinal in nature (Noguchi &

Stewart, 2018), equivalent to questions with binary outcomes, e.g. ‘Is option a better

than option b in dimension x?’, instead of more complicated questions, e.g. ‘How

much better is option a than option b in dimension x?’, because findings in the field
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of psychophysics suggest that agents are good at discriminating stimuli, but are not

good at determining the magnitude of the same stimuli (Stewart, Chater, & Brown,

2006).

3.3 Total Uncertainty

Lemma 5 tells us that for each binary partition Pb, there is an associated

multiplier, λ(Pb) ∈ R++, such that for all probability measures µ: C(Pb, µ) =

λ(Pb)H(Pb, µ). Since there are a finite number of binary partitions of Ω, we can order

the binary partitions by their associated multipliers. Let λ1 denote the multiplier

associated with all binary partitions, denoted {Pb,λ1i }n1
i=1, with the lowest multiplier.

If the agent can always learn the state of the world by asking questions with

multiplier λ1, then σ({Pb,λ1i }n1
i=1) = F , and we let M=1.12 If not, let λ2 denote the

multiplier associated with all binary partitions, denoted {Pb,λ2i }n2
i=1, with the second

lowest multiplier.

If the agent can always learn the state of the world by asking questions with

multipliers λ1 or λ2, then σ({Pb,λ1i }n1
i=1, {P

b,λ2
i }n2

i=1) = F , and we let M = 2. If not,

let λ3 denote the multiplier associated with all binary partitions, denoted {Pb,λ3i }n3
i=1,

with the third lowest multiplier.

Continue in this fashion until we let λM denote the multiplier associated with all

binary partitions, denoted {Pb,λMi }nMi=1, with the lowest multiplier such that the state

of the world is always revealed when all questions with equal or lower associated multi-

pliers are asked, that is, the lowest M such that: σ({Pb,λ1i }n1
i=1, . . . , {P

b,λM
i }nMi=1) = F .

To help make our notation more compact, we can use a group of partitions to

generate a finer partition: if (P1, . . . , Pm) is a group of partitions, let ×{Pi}ni=1 de-

note the partition such that σ(×{Pi}ni=1) = σ(P1, . . . , Pn). Then, for j ∈ {1, . . . , M},13

let Pλj = ×{Pb,λji }
nj
i=1.

12If M=1, then MSSE collapses to standard Shannon Entropy.
13M is defined in the proceeding paragraphs.
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MSSE incorporates different perceptual distances because it allows for different

events to be different distances from each other. Events in Pλ1 , for instance, have

greater perceptual distances between them than events in PλM (assuming M > 1).

Since Ω is a partition of itself, we can, as a minor abuse of notation, let S(Ω) =

{S|σ(S) = F} denote the set of learning strategies such that σ(S) = σ(Ω) = F .

Theorem 1. If C satisfies all five axioms, then there exists partitions Pλ1 , . . . , PλM
as defined above, and strictly positive constants λ1 < . . . < λM , such that for any

probability measure µ on F

min
S∈S(Ω)

C(S, µ) = λ1H
(
Pλ1 , µ

)
+E
[
λ2H

(
Pλ2 , µ(·|Pλ1(ω))

)
+· · ·+λMH

(
PλM , µ(·|∩M−1

i=1 Pλi(ω))
)]
,

where H is defined as in equation (1).

In plain language, Theorem 1 says that if the cost of learning satisfies all five

axioms, then the cheapest way (in expectation) to learn the state of the world always

involves first asking all the yes or no questions with the lowest associated multiplier (in

any order), then asking all the yes or no questions with the second lowest multiplier,

and continuing in this fashion until the state of the world has been realized.

Theorem 1 generates the more flexible measure of uncertainty that we desired

for studying inattentive behavior. If the agent starts with a prior µ, and does optimal

learning that reaches a posterior µ̃, then we let the cost of this inattentive research be

the reduction in the cost of perfectly learning the state of the world, as is discussed

in the next section.

In terms of Shannon’s original context, this paper’s model can be thought

of as describing learning of information from M sources, where source i, for i ∈

{1, 2, . . . , M}, is capable of providing information about Pλi(ω). Shannon’s origi-

nal axioms, in contrast, impose that all partitions P are learning strategy invariant,

which is analogous to all binary partitions having the lowest multiplier, and there

only being one information source relevant for learning.
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The Pλi ’s that could be used in Theorem 1 are not unique, with the excep-

tion of Pλ1 . The versions described in the paragraphs preceding Theorem 1 are the

unique coarsest partitions that could be used in the statement of the theorem. For

i ∈ {2, . . . , M}, Pλi could, for instance, be replaced by P̃λi = ×{Pλj}ij=1 in the

statement of Theorem 1, which would constitute the unique finest representation of

the partitions.

The axiomatic derivation of the cost benchmark in this paper requires a discrete

state space for the state of the world, as is the case with Shannon Entropy. If a

continuous state space is desired for the state of the world, however, a measure of

uncertainty for a continuous state space can be defined in an analogous manner to

the measure of uncertainty defined in Theorem 1 for a discrete state space, which is

similar to what is done by Shannon (1948) to apply Shannon Entropy in a continuous

setting.

4 Inattentive Learning with MSSE

The following section introduces and solves a model of RI that uses MSSE to

measure the cost of acquiring information. We establish that our new more flexible

measure of uncertainty can still be incorporated tractably into a model of RI, which

is not an obvious result. Apart from the use of MSSE instead of Shannon Entropy for

the measurement of uncertainty, this section follows the work of Matějka and McKay

(2015) closely so as to aid comparison between the two models.

Given our result in Theorem 1, we take the expected cost of a particular infor-

mation strategy to be defined as:

C(F (s, ω), µ) = E
[

min
S∈S(Ω)

C(S, µ)− min
S∈S(Ω)

C(S, µ(·|s))
]
.

A noisy information strategy reduces the total amount of uncertainty, and we thus

measure the cost of such a noisy information strategy as the expected reduction in
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total uncertainty. This interpretation can also be applied to RI models that use Shan-

non Entropy to measure the cost of noisy information structures. Shannon Entropy

is a measure of total uncertainty derived from axioms about the cost of successively

learning the realized events of partitions, and in such models the cost of a noisy sig-

nal is simply taken to be the reduction in total uncertainty, as measured by Shannon

Entropy.

The cost functions that can be defined as above with MSSE are in the class of

uniformly posterior-separable cost functions described by Caplin et al. (2017). The

behavior generated in static settings by such posterior-separable cost functions has

been shown to be equivalent to the behavior generated by sequential information

sampling in some dynamic contexts (Hébert & Woodford, 2017; Morris & Strack,

2019). In particular, Hébert and Woodford (2017) show that a class of static cost

functions, which they call ‘neighborhood-based’ cost functions, can be micro-founded

in this way. The cost functions explored in this paper that measure the reduction

in MSSE are a strict subset of the neighborhood-based cost functions described in

their paper, and thus the cost functions in this paper are micro-founded in two ways,

directly through the axioms in this paper, and indirectly through the dynamic analysis

conducted by Hébert and Woodford (2017). While symmetry imposes a unique set

of partitions in Example 1 when MSSE is used, there are numerous representations

that can be used when a neighborhood-based cost function is assumed. Hébert and

Woodford (2017) suggest two ways of modelling the neighborhoods in such a setting,

one of which is fitted by Dean and Neligh (2019), and neither of which is equivalent

to the partitions suggested by MSSE.

Huettner et al. (2019), in turn, create an ad hoc group of cost functions that are

also a generalization of Shannon Entropy, but are a strict subset of the cost functions

studied in this paper that measure reduction in MSSE. The cost functions studied

by Huettner et al. (2019) allow for multiple perceptual distances, but are not capable

of predicting the behavior we argued was intuitive in Example 1, since in Example 1

28



their cost functions collapses to standard Shannon Entropy.

4.1 Rationally Inattentive Agent’s Problem

As was discussed in Section 2, when the agent faces a probability space (Ω, F , µ)

and a set of options N , the agent’s problem is to maximize the expected value of

the option they select less the cost of learning by choosing an optimal information

strategy, and subsequently selecting an option based on the signal produced by their

information strategy. The agent’s problem can thus be written:

max
F∈∆(R×Ω)

∑
ω∈Ω

∫
s

V (s|F )F (ds|ω)µ(ω)−C(F (s, ω), µ), (2)

such that ∀ω ∈ Ω :

∫
s

F (ds, ω) = µ(ω). (3)

The above problem is complicated and not particularly tractable, so we follow

Matějka and McKay (2015) and re-write this problem directly in terms of the choice

probabilities of the agent. This process requires the development of some new no-

tation. Define S(n|F ) = {s ∈ R : F (s) > 0, a(s|F ) = n}, to be the set of signals

that result in the agent selecting option n. Next, as was done in Section 2, define the

chance of option n being selected conditional on the state of the world to be:

Pr(n|ω) =

∫
s∈S(n|F )

F (ds|ω), (4)

and for event A ∈ F , define the chance of n being selected conditional on A being

realized to be:

Pr(n|A) =
∑
ω∈A

Pr(n|ω)µ(ω|A). (5)
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Define the unconditional choice probability of option n to be:

Pr(n) =
∑
ω∈Ω

Pr(n|ω)µ(ω). (6)

Denote the collection {Pr(n|ω)}Nn=1 by P. Using this notation, we can re-write the

agent’s problem:

Lemma 6. Choice probabilities P are the outcome of a solution to the agent’s

problem in (2) subject to (3) iff they solve:

max
P

∑
n∈N

∑
ω∈Ω

vn(ω)Pr(n|ω)µ(ω)−C(P, µ), (7)

such that: ∀n ∈ N , Pr(n|ω) ≥ 0, ∀ω ∈ Ω, (8)

and
∑
n∈N

Pr(n|ω) = 1 ∀ω ∈ Ω, (9)

where C(P, µ) is as defined in Lemma 14.

Proofs for results in Section 4 and Section 5 can be found in Appendix 2

This new problem, where the agent selects their conditional choice behavior P, is

substantially easier to solve than the problem where the agent picks their information

strategy F (s, ω).

4.2 Behavior of a Rationally Inattentive Agent

Using Lemma 6, we can establish a necessary condition for the optimal behavior

of the agent with Theorem 2, and then use said necessary condition to simplify the

maximization problem undertaken by the agent with Corollary 1. To ease exposition,
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for the rest of the paper we assume µ(ω) > 0 ∀ω ∈ Ω.

Theorem 2:

If P is the solution to (7) subject to (8) and (9), then ∀n ∈ N , and ∀ω ∈ Ω,

the probability that option n is selected in state ω satisfies:

Pr(n|ω) =
Pr(n)

λ1
λM Pr(n|Pλ1(ω))

λ2−λ1
λM . . . Pr(n| ∩M−1

i=1 Pλi(ω))
λM−λM−1

λM e
vn(ω)
λM∑

ν∈N

Pr(ν)
λ1
λM Pr(ν|Pλ1(ω))

λ2−λ1
λM . . . Pr(ν| ∩M−1

i=1 Pλi(ω))
λM−λM−1

λM e
vν (ω)
λM

.

(10)

Those familiar with the work of Matějka and McKay (2015) will recognize the

above formula as the MSSE analogue of Matějka and McKay (2015)’s Theorem 1.

When all partitions are learning strategy invariant, λ1 = λ2 = · · · = λM , and the

above formula collapses to Matějka and McKay (2015)’s Theorem 1.

With standard Shannon Entropy, the chance that the agent selects an option

thus depends only on the unconditional chances of the options being selected, and

the realized values of the options. With MSSE, in contrast, as the above formula

indicates, the chance that the agent selects an option n in a particular state of the

world ω depends on the unconditional chances of the options being selected, Pr(n),

the realized values of the options vn(ω), as well as the probabilities of the options

being selected in similar states of the world. Here ‘similar states of the world’ refers

to states that induce the same realization of partitions with associated multipliers

smaller than λM . It makes sense that when easier to observe pieces of information

indicate that an option n is likely of above average value, that the agent should

select option n with a higher probability, even if the above average value has not

been realized. For a more complete discussion of the intuitive properties of the choice

behavior described in Theorem 2, please see Appendix 3.

Behavior that is consistent with Theorem 2 is not necessarily optimal because

in many settings it is not optimal for the agent to consider all of the available options
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(choose them with positive probability), and though such a corner solution may be

optimal, there are many corners that are consistent with Theorem 2 but are not

optimal. For instance, for any n ∈ N , if the agent selects n with probability one in

all states of the world, then their behavior is consistent with Theorem 2, but it is

easy to come up with examples where this would not be optimal for any n.

Corollary 1:

Conditional and unconditional choice probabilities described in (5) and (6) are

a solution to (7) subject to (8) and (9) iff they comply with Theorem 2 and solve:

max
P

∑
ω∈Ω

log

(∑
n∈N

Pr(n)
λ1
λM Pr(n|Pλ1(ω))

λ2−λ1
λM . . . Pr(n|∩M−1

i=1 Pλi(ω))
λM−λM−1

λM e
vn(ω)
λM

)
µ(ω),

such that:

∀A ∈ F : Pr(n|A) ≥ 0 ∀n, and
∑
n∈N

Pr(n|A) = 1.

Corollary 1 is helpful because it reduces the number of choice variables faced by

the agent, which means it is easier for the researcher to find optimal agent behavior.

When solving the problem described in Lemma 6, the agent must choose Pr(n|ω) for

all n and ω. When solving the problem in Corollary 1, the agent must only choose

Pr(n|A) for all n and A ∈ ×{Pλi}M−1
i=1 , which is a coarser partition. In Example 2,

for instance, if the agent tries to solve Lemma 6 they must pick their probabilities of

selecting option 1 and option 2 in four different states of the world, while if they solve

the problem in Corollary 1 they must only pick their probabilities of selecting option

1 and option 2 in two events, and then Theorem 2 dictates their choice probabilities

in each state of the world. This reduction makes finding optimal behavior of the

agent easier for the researcher because there are thus half as many choice variables

when analysing Example 2 if Corollary 1 is used instead of Lemma 6.

Any choice behavior that complies with Corollary 1 and Theorem 2 is optimal.

This paper does not provide conditions for optimal behavior that are both necessary
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and sufficient, however, as is done by Caplin, Dean, and Leahy (2018) in a setting with

standard Shannon Entropy. This may cause some to view finding optimal behavior

with MSSE quite daunting. The necessary and sufficient conditions given by Caplin

et al. (2018) in the setting with Shannon Entropy are appealing because they verify if

behavior that satisfies the necessary conditions are in fact optimal, and provide insight

into the formation of the agent’s optimal consideration set, which is interesting in and

of itself. In the more complicated setting studied in this paper, the necessary and

sufficient conditions are less appealing. The reality is that almost any problem in this

more complicated setting requires a computer for finding optimal behavior, but that

is true in the standard setting as well, even with the conditions derived by Caplin

et al. (2018). The good news is that the optimization problem that needs to be

solved involves maximization of a strictly concave function over a compact domain,

which is differentiable everywhere on the interior. Thus, standard steepest accent

algorithms work well for solving the problem described in Corollary 1, even when the

number of options in N and the number of events in ×{Pλi}M−1
i=1 are large. For those

that are interested in a discussion of how MSSE changes the formation of optimal

consideration sets, please see Walker-Jones (2019). Further, while Huettner et al.

(2019) do attempt to provide necessary and sufficient conditions for optimal behavior

in their setting, the conditions are incorrect, as is also discussed by Walker-Jones

(2019).

As is true in the setting with standard Shannon Entropy, optimal choice behavior

may not be unique. If two options are known a priori to take the same value in each

state of the world, for instance, then the agent can shift probability from one of these

two options to the other whenever the former has a strictly positive probability of

being selected in an optimal solution. While these sorts of environments are possible,

generically optimal behavior is unique. This feature of optimal behavior should be

evident since payoffs are linear, and costs are strictly convex. The exact sufficient

conditions for the uniqueness of a solution are withheld, but for the solution not to
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be unique, similar to the case with Shannon Entropy studied by Matějka and McKay

(2015), a very rigid form of co-movement is required between payoffs and states.

5 Comparisons with the Standard Model

In this section we compare and contrast the choice behavior that is produced

by RI with Shannon Entropy and the choice behavior produced by the RI model

developed in Section 4 that uses the MSSE measure developed in Section 3. We first

discuss the relationship between RU models and RI with MSSE, and then revisit the

two motivating examples, Example 1 and Example 2, from Section 2.

5.1 Comparison with Random Utility Model

It is standard practice to use a RU model to describe discrete choice settings.

In such a model, the agent picks the option with the largest sum un = vn + εn over

all options n ∈ N . Generally, un represents the value of the option to the agent, vn

represents the average value of the option across agents, and εn represents an idiosyn-

cratic value to the agent. The role εn plays is up to interpretation, however, and is

determined by the researchers specification (Train, 2009). In a setting where agents

are thought to be rationally inattentive, the above terms are interpreted in a different

way because the agent’s noisy behavior is generated by perceptual error instead of

idiosyncratic differences in taste. In such settings, un represents the perceived value

to the agent, vn represents the true value to the agent, and εn is interpreted as an un-

observable perceptual error that results from the noisy information strategy selected

by the agent. Woodford (2014) argues that this latter interpretation is necessary in

many contexts due to the stochastic responses observed in perceptual discrimination

tasks such as those administered by Dean and Neligh (2019), which are akin to our

Example 1 in Section 2.1. While the interpretation of εn is relevant for welfare anal-

ysis, it is inconsequential for the description of choice behavior. How then can MSSE
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be interpreted in terms of an RU framework, and what insights may be provided

about the fitting of RU models?

Matějka and McKay (2015) point out that choice probabilities predicted by RI

with Shannon Entropy correspond to multinomial logit choice probabilities where it

is as if option values have been shifted due to the agent’s prior about potential values.

An option that seems more desirable a priori is more likely to be selected by the agent

in every state of the world, and thus is overvalued by a multinomial logit regression.

Rational inattention with MSSE takes this one step further, as is shown by

Theorem 3, allowing the shift in perceived value to also depend on easier to observe

information sources (binary partitions associated multipliers that are less than λM).

This flexibility seems natural in many real world environments. Consider an agent

that is trying to select a restaurant to go to. One may expect that the chance of the

agent selecting a given option to increase not only with the quality of the restaurant,

and their prior impression of it, but also with easy to observe information such as

on-line ratings the restaurant may have received.

Theorem 3:

The choice behavior described by P, a solution to (7) subject to (8) and (9), is

identical to the behavior produced by an RU model where each option n ∈ N has

perceived value:

un = ṽn + αn + εn,

where ṽn =
vn(ω)

λM
, εn has an iid Gumbel distribution, and:

αn = λ1
λM

log(NPr(n))+λ2−λ1
λM

log(NPr(n|Pλ1(ω)))+· · ·+λM−λM−1
λM

log(NPr(n|∩M−1
i=1 Pλi(ω))).

Theorem 3 is meant to provide insight into the outcome of attempting to fit

a RU model in an environment where agents are rationally inattentive with a cost

function for information described by MSSE. Theorem 3 does not say that a model

of RI with MSSE is equivalent to a RU model. Even if choice data from a given
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choice problem cannot be used to reject one for the other, across choice problems

MSSE produces behavior that can reject the hypothesis of a RU model. With MSSE,

for instance, as with standard Shannon Entropy, adding an option can increase the

chance of an existing option being selected, which is not possible with a RU model.

Also, it is worth mentioning that since optimal behavior may result in some

options being selected with probability zero, Theorem 3 implicitly defines each αn on

the extended reals so that αn = −∞ if Pr(n) = 0.14

5.2 Example 1 Revisited

We now revisit Example 1 from Section 2.1, which is described in Table 1. It

seems natural that it should be easier for the agent to answer the question ‘Are 60

of the balls blue?’, than it is for them to answer ‘Are 51 or more of the balls blue?’.

Similarly, it seems natural that it should be easier for the agent to answer the question

‘Are 60 of the balls red?’, than it is for them to answer ‘Are 51 or more of the balls

red?’. Symmetry also means that the questions ‘Are 60 of the balls blue?’ and ‘Are

60 of the balls red?’ should have the same expected cost, and the questions ‘Are 51 or

more of the balls blue?’ and ‘Are 51 or more of the balls red?’ should have the same

expected cost. We can thus assume Pλ1 = {A1, A2, A3} = {{ω1}, {ω2 ∪ ω3}, {ω4}},

and Pλ2 = {{ω1 ∪ ω2}, {ω3 ∪ ω4}}.

Solutions to Corollary 1 combined with Theorem 2 mean that the chance of the

agent selecting option 1 is increasing in the number of blue balls, as can be seen in

Figure 1, which depicts optimal behavior in each state of the world for a range of λ1.

When λ1 is small relative to λ2 the agent chooses option 1 in state ω1 with a high

probability, and choose option 2 in state ω4 with a high probability. The agent is

thus better able to discern the state of the world when there are 40 of one color ball

and 60 of the other than when there are 49 of one color and 51 of the other. This

14It can be shown that if optimal behavior results in Pr(n) > 0, then Pr(n|ω) > 0 ∀ω ∈ Ω. See
(Walker-Jones, 2019).
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is supported by the experimental work of Dean and Neligh (2019), and is in contrast

with the behavior predicted by a model of RI that uses Shannon Entropy.

Morris and Yang (2016) identify a related issue with Shannon Entropy’s lack

of perceptual distance, and warn against its use in some continuous settings because

it predicts discontinuous changes in behavior at places where payoffs change discon-

tinuously. In the limit, as the number of different perceptual distances is allowed to

grow, MSSE can be used to produce the kind of continuous behavior that Morris and

Yang (2016) desire.

Figure 1:
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5.3 Example 2 Revisited

We now revisit Example 2 from Section 2.2, which is described in Table 2. We

assumed that learning the value of option 1 is less costly than learning the value of

option 2. That is to say, answering the question ‘Is option 1 of value H?’ has a lower
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Figure 2:

expected cost to the agent than the question ‘Is option 2 of value H?’. We can thus

assume: Pλ1 = {A1, A2} = {{ω1∪ω2}, {ω3∪ω4}}, and Pλ2 = {{ω1∪ω3}, {ω2∪ω4}}.

Solutions to Corollary 1 in this environment for a range of λ1 can be found in

Figure 2, which shows that when λ1 is small compared to λ2, the agent selects option

1 with a high probability when it is of value H, and selects option 2 with a high

probability when option 1 is of value L. As λ1 increases relative to λ2, the chance

of option 1 being selected when it is of value H decreases. Similarly, as λ1 increases

relative to λ2, the chance of option 1 being selected when it is of value L increases.

Note that the solutions to Corollary 1 mean that the agent is more likely to select

option 1 when state ω1 has been realized since Pr(1|A1) > Pr(2|A1), and more likely

to select option 2 when state ω4 has been realized since Pr(1|A2) < Pr(2|A2), as can

be observed with Theorem 2.

Solutions to Corollary 1 combined with Theorem 3 mean that if an econometri-

cian tries to fit this environment with a multinomial logit model that their estimate
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of H1, the high value of option 1, is biased upwards by λ2−λ1
λ2

log(2Pr(1|A1)), which

is greater than zero since Pr(1|A1) > 1/2, and their estimate of L1, the low value of

option 1, is biased downwards by λ2−λ1
λ2

log(2Pr(1|A2)), which is less than zero since

Pr(1|A2) < 1/2. These biases are despite the fact that the unconditional chance of

either option being selected is the same: Pr(1) = Pr(2) = 1/2. As such, the econome-

trician may have believed their analysis was not susceptible to informational biases

if they had used Shannon Entropy to model the environment.

6 Conclusion

Rational inattention models that use Shannon Entropy to measure the cost of

learning demonstrate that informational biases in random utility models can be sig-

nificant for welfare and counterfactual analysis. The biases that have previously been

identified in the literature are independent of the realized state of the world, depend-

ing only on the agent’s prior about the environment. These previously identified

biases manifest themselves in the unconditional choice probabilities of the agent.

This paper contributes to the literature by proposing and axiomatizing a new

measure of uncertainty that features perceptual distance, maintains much of the

tractability of Shannon’s standard measure, and identifies a new kind of informa-

tional bias. The new form of bias can be present even when the agent has the same

unconditional chance of selecting each option, which may seem to indicate an unbiased

environment based on the previous literature.
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Appendix 1

Before we prove Lemma 1, we show some other useful results:

Lemma 7. If a partition P̃ is coarser than a learning strategy invariant partition P ,

then P̃ is also learning strategy invariant.

Proof. Suppose P is a learning strategy invariant partition, and P̃ is coarser than

P . If P̃ = P we are done.

If P̃ 6= P , then the definition of learning strategy invariance tells us that for

any learning strategy S̃ = (P1, . . . , Pn) such that σ(S̃) = σ(P̃ ), and any µ:

C(P , µ) = C((P̃ , P), µ) = C(P̃ , µ) + E[C(P , µ(·|P̃(ω)))],

and,

C(P , µ) = C(S̃, µ) + E[C(P , µ(·|∩ni=1Pi(ω)))] = C(S̃, µ) + E[C(P , µ(·|P̃(ω)))].

Thus, C(P̃ , µ) = C(S̃, µ) for all such S̃, and any µ, so P̃ is also learning strategy

invariant.�

Lemma 8. If P = {A1, . . . , Am} is a learning strategy invariant partition with

m ≥ 3, and probability measure µ assigns a probability of one to an event Ai ∈

{A1, . . . , Am}, then C(P , µ) = 0.

Proof. Suppose P = {A1, . . . , Am} is a learning strategy invariant partition of the

state space Ω, with m ≥ 3, and there is an Ai ∈ {A1, . . . , Am} such that µ(Ai) = 1.

It is without loss to further assume i = 1.

Let P̃ = {A1, A
c
1}, P̂ = {A1 ∪ A2, A3, . . . , Am}, S1 = (P̃ , P̂), and S2 =

(P̃ , P̂ , P). The definition of learning strategy invariance tells us C(S1, µ) = C(S2, µ),

so C(P , µ) = 0.�

Proof of Lemma 1. Suppose P = {A1, . . . , Am} is a learning strategy invariant
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partition of the state space Ω with m ≥ 3. The definition of learning strategy in-

variance implies C(P , µ) is fully determined by expected learning costs on binary

partitions coarser than P . Axiom 1 tells us knowing µ(A1), . . . , and µ(Am) is more

than enough to compute expected learning costs on binary partitions coarser than P ,

and thus C(P , µ) is fully determined by µ(A1), . . . , and µ(Am).

If we show that for any i, j ∈ {1, . . . , m} such that i 6= j, C(P , µ) = C(P , µ̃)

if µ(Ak) = µ̃(Ak) for k /∈ {i, j}, µ(Ai) = µ̃(Aj), and µ(Aj) = µ̃(Ai), then the de-

sired result holds, since a series of pairwise switches like this can be used to create

any permutation desired. It is without loss to assume i = 1 and j = 2. Define

P̃ = {A1, A2, (A1 ∪ A2)c}. Notice that P̃ must be learning strategy invariant based

on Lemma 7. Further, if we show that C(P̃ , µ) = C(P̃ , µ̃), then C(P , µ) = C(P , µ̃),

since, if we define P̂ = {A1∪A2, A3, . . . , Am}, which is also learning strategy invari-

ant based on Lemma 7, then Lemma 8 tell us:

C(P , µ) = C(P̃ , µ) + (1− µ(A1 ∪ A2))C(P̂ , µ̂)

= C(P̃ , µ̃) + (1− µ(A1 ∪ A2))C(P̂ , µ̂) = C(P , µ̃),

if we define probability measure µ̂ so that µ̂(A1) = µ̂(A2) = 0, and for i ∈ {3, . . . , m}

we have µ̂(Ai) = µ(Ai)/(1 − µ(A1 ∪ A2)). Now, let Pb1 = {A1, A
c
1}, Pb2 = {A2, A

c
2},

and Pb3 = {A1∪A2, (A1∪A2)c}. Notice Pb1, Pb2 and Pb3, are all coarser than P̃ . Then,

since P̃ is learning strategy invariant:

C(P̃ , µ) = C(Pb3, µ) + E[C(Pb1, µ(·|Pb1(ω))],

and,

C(P̃ , µ̃) = C(Pb3, µ̃) + E[C(Pb1, µ̃(·|Pb1(ω))].

Notice that Axiom 1 tells us C(Pb3, µ) = C(Pb3, µ̃). So, all that remains to show is

that if the probability measure ν̃ is a permutation of the probability measure ν on
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Pb1, then C(Pb1, ν) = C(Pb1, ν̃). Fix arbitrary ν(A1) = x ∈ [0, 1]. Now consider the

probability measures q1, q2, q3, such that:

q1(A1) = x, q1(A2) = 0, q1((A1 ∪ A2)c) = 1− x,

q2(A1) = 0, q2(A2) = x, q2((A1 ∪ A2)c) = 1− x,

q3(A1) = 1− x, q3(A2) = x, q3((A1 ∪ A2)c) = 0.

Notice that q3 is a permutation of q1 on Pb1. So then, using Axiom 1, the definition

of learning strategy invariance, and Lemma 8, all repeatedly:

C(Pb1, q1) = C(P̃ , q1) = C(Pb3, q1) = C(Pb3, q2)

= C(P̃ , q2) = C(Pb2, q2) = C(Pb2, q3) = C(P̃ , q3) = C(Pb1, q3),

and we are done.�

Proof of Lemma 2. For all partitions P = {A1, . . . , Am} and probability measures

µ defined on P , define the vector µ(P) = (µ(A1), . . . , µ(Am)).

Suppose Pi = {A1, . . . , Am} is learning strategy invariant with m ≥ 3, and P̃i
is another learning strategy invariant partition such that P̃i 6= Pi, and P̃i is coarser

than Pi. Lemma 1 tells us that C(Pi, µ) and C(P̃i, µ) are fully determined by µ(Pi)

and µ(P̃i) respectively, and if the strictly positive entries of µ(Pi) and µ(P̃i) are the

same (up to a permutation), then Lemma 8 and the definition of learning strategy

invariant partitions tell us C(Pi, µ) = C(P̃i, µ). This is true for any P̃i that is

coarser than Pi since we can pick µ so that uncertainty about which even in Pi has

been realized is fully determined by the realized event of P̃i. What does this mean?

This means that there is a function which maps from vectors of probabilities onto

the reals, ci : ∪m−1
j=1 4j → R, where 4j is the j simplex, such that for any learning

strategy invariant partition P̃i coarser than Pi, C(P̃i, µ) = ci(µ(P̃i)) ≡ C(Pi, µ).
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So, for any binary partition Pb coarser than Pi, C(Pb, µ) = ci(µ(Pb)) (notice

that this means that C(Pb, µ) is constant with respect to permutations of µ on Pb for

all such Pb since C(P , µ) is constant with respect to permutations of µ on P). Now

pick P̃i = {B1, B2, B3} so that it is coarser than Pi and it has three elements. Lemma

7 tells us P̃i is learning strategy invariant, and it is easy to show each binary partition

which is coarser than P̃i is coarser than Pi. Thus, for all probability measures µ on

P̃i such that µ(B1), µ(B2), and µ(B3) are all strictly less than one, the definition of

learning strategy invariance tells us:

C(P̃i, µ) = ci(µ(B1), 1− µ(B1)) + (1− µ(B1))ci

( µ(B2)

µ(B2) + µ(B3)
,

µ(B3)

µ(B2) + µ(B3)

)

= ci(µ(B2), 1− µ(B2)) + (1− µ(B2))ci

( µ(B1)

µ(B1) + µ(B3)
,

µ(B3)

µ(B1) + µ(B3)

)
= ci(µ(B3), 1− µ(B3)) + (1− µ(B3))ci

( µ(B1)

µ(B1) + µ(B2)
,

µ(B2)

µ(B1) + µ(B2)

)
,

and we are done.�

We say that the vector (q1, . . . , qn) is a permutation of the vector (p1, . . . , pn)

if there is a bijection π : {1, . . . , n} → {1, . . . , n} such that ∀i ∈ {1, . . . , n}, qi =

pπ(i)). Before we prove Lemma 3, we pause to show another useful result.

Lemma 9. Given a binary partition Pb, if we define cPb : ∪∞j=14j → R, where 4j is

the j simplex, such that (for n ≥ 2): cPb(p1, . . . , pn) = C(Pb, p1, 1−p1) if p1+p2 = 1,

and otherwise:

cPb(p1, . . . , pn) = C(Pb, p1, 1− p1) + (1− p1)C
(
Pb, p2

1− p1

,
1− p1 − p2

1− p1

)

+ . . . + (1− p1 − . . . − pm−1)C
(
Pb, pm

1− p1 − . . . − pm−1

,
1− p1 − . . . − pm

1− p1 − . . . − pm−1

)
,

where m is the lowest integer such that p1 + . . . + pm = 1, then if (q1, . . . , qn)

is a permutation of (p1, . . . , pn), and C satisfies Axiom 1, and Axiom 2, then:

43



cPb(q1, . . . , qn) = cPb(p1, . . . , pn), and further if (p1, . . . , pn) is a vector (n ≥ 2)

with one entry of value one, and the rest zero cPb(p1, . . . , pn) = 0.

Proof of Lemma 9. Given a binary partition Pb, suppose C satisfies Axiom 1, and

Axiom 2, and that cPb is defined as above. All vectors discussed in this proof are as-

sumed to sum to one. We proceed with an inductive argument, beginning by showing

cPb(p, 1− p) is constant with respect to permutations. Consider cPb(p1, p2, p3) when

p1, p3 > 0, and p2 = 0. Axiom 2 tells us:

cPb(p1, 1−p1)+(1−p1)cPb(0, 1) = cPb(0, 1)+cPb(p1, 1−p1) = cPb(p3, 1−p3)+(1−p3)cPb(1, 0).

The first equality implies cPb(0, 1) = 0. Now consider cPb(q1, q2, q3) when q1, q2 > 0,

and q3 = 0. Axiom 2 tells us:

cPb(0, 1) + cPb(q1, q2) = cPb(q1, q2) + p2cPb(1, 0),

so since cPb(0, 1) = 0, we know cPb(1, 0) = 0 = cPb(0, 1), and combined with our

previous two equalities above we know:

cPb(p1, 1− p1) = cPb(p3, 1− p3) + (1− p3)cPb(1, 0) = cPb(1− p1, p1).

Thus, cPb(p, 1 − p) = cPb(1 − p, p) for all p ∈ [0, 1]. Since cPb(1, 0) = 0, if we show

cPb is constant with respect to permutations of vectors of arbitrary length (greater

or equal to two), then if (p1, . . . , pn) is a vector (n ≥ 2) with one entry of value one,

and the rest zero, then cPb(p1, . . . , pn) = 0.

Next we show cPb(p1, p2, p3) is constant with respect to permutations. Since cPb

is constant with respect to permutation on vectors of length two, the definition of cPb ,

and the fact that cPb(1, 0) = cPb(0, 1) = 0, tells us cPb(p1, p2, p3) = cPb(p1, p3, p2).

Thus, if cPb(p1, p2, p3) = cPb(p2, p1, p3), then cPb(p1, p2, p3) is constant with respect

to permutations since combinations of these two different pairwise permutations can
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achieve any permutation desired, as can be shown, since if p1 = 1 or p2 = 1 we know

this is true, and otherwise with Axiom 2 we know:

cPb(p1, p2, p3) = cPb(p1, 1− p1) + (1− p1)cPb
( p2

1− p1

,
1− p1 − p2

1− p1

)

= cPb(p2, 1− p2) + (1− p2)cPb
( p1

1− p2

,
1− p1 − p2

1− p2

)
= cPb(p2, p1, p3).

Now assume that cPb is constant with respect to permutations on vectors of

length n ≥ 3, and we next show cPb is constant with respect to permutations on vec-

tors of length n+ 1, and we are done. If p1 + p2 = 1 we are done. If not, notice that

cPb(p1, . . . , pn+1) = cPb(p1, 1−p1)+(1−p1)cPb
( p2

1− p1

, . . . ,
pn+1

1− p1

)
, for n ≥ 2 when-

ever p1 6= 1, so we only need to show cPb(p1, p2, . . . , pn+1) = cPb(p2, p1, . . . , pn+1),

which is true:

cPb(p1, p2, . . . , pn+1) = cPb(p1, 1− p1) + (1− p1)cPb
( p2

1− p1

, . . . ,
pn+1

1− p1

)

= cPb(p1, 1−p1)+(1−p1)cPb
( p2

1− p1

,
1− p1 − p2

1− p1

)
+(1−p1−p2)cPb

( p3

1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p1, p2, 1− p1 − p2) + (1− p1 − p2)cPb

( p3

1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p2, p1, 1− p1 − p2) + (1− p1 − p2)cPb

( p3

1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p2, 1−p2)+(1−p2)cPb

( p1

1− p2

,
1− p1 − p2

1− p2

)
+(1−p1−p2)cPb

( p3

1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p2, 1− p2) + (1− p2)cPb

( p1

1− p2

, . . . ,
pn+1

1− p2

)
= cPb(p2, p1, . . . , pn+1).�

Lemma 10. Given a binary partition Pb, define cPb : ∪∞j=14j → R, where 4j is the

j simplex, as in the statement of Lemma 9, and suppose C satisfies Axiom 1, and

Axiom 2, then if (q1, . . . , qm) and (p1, . . . , pn) are two probability vectors (weakly

positive numbers that sum to one with 1 < m < n), such that each qi is strictly

positive, and can be written as the sum of one or more pjs with each pj used (once) in
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the sum of one qi. Let us rename the pj(s) assigned to each qi so that qi = pi1 + . . . pini .

Then it is true that:

cPb(p1, . . . , pn) = cPb(q1, . . . , qm) +
m∑
i=1

qicPb
(pi1
qi
, . . . ,

pini
qi
, 0
)
.

Proof of Lemma 10. Given a binary partition Pb, suppose C satisfies Axiom 1,

and Axiom 2, that cPb is defined as in the statement of Lemma 9, and (q1, . . . , qm)

and (p1, . . . , pn) are described as in the statement of Lemma 10 (including the re-

naming of the pjs). All vectors discussed in this proof are assumed to sum to one

and have at least length two, and we use the fact that the definition of cPb implies

cPb(p1, . . . , pn) = cPb(p1, . . . , pn, 0), and cPb(1, 0) = 0, without reference. In Lemma

9 we showed cPb is constant with respect to permutations of vectors of arbitrary length

(greater or equal to two). Thus, all we need to do is show:

cPb(p1, . . . , pm−1, pm, . . . , pn) = cPb(q1, . . . , qm) + qmcPb
(pm
qm
, . . . ,

pn
qm
, 0
)
,

where for i ∈ {1, . . .m − 1} qi = pi, 1 < m < n, and qm = pm + . . . + pn > 0.

This is of course true. If m = 2, or qm = pm, this is trivially true. If m > 2 and

qm > pm, then it is still true given the definition of cPb since (assuming without loss

that pn > 0):

cPb(p1, . . . , pm−1, pm, . . . , pn) = C(Pb, p1, 1−p1)+(1−p1)C
(
Pb, p2

1− p1

,
1− p1 − p2

1− p1

)

+ . . . + (1− p1 − . . . − pm−1)C
(
Pb, pm

1− p1 − . . . − pm−1

,
1− p1 − . . . − pm

1− p1 − . . . − pm−1

)
+(1− p1 − . . . − pm)C

(
Pb, pm+1

1− p1 − . . . − pm
,

1− p1 − . . . − pm
1− p1 − . . . − pm−1

)
+ · · ·+ (1− p1 − . . . − pn1)C

(
Pb, pn

1− p1 − . . . − pn1

,
1− p1 − . . . − pn

1− p1 − . . . − pm−1

)
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= cPb(q1, . . . , qm) + qmcPb
(pm
qm
, . . . ,

pn
qm
, 0
)
.�

Proof of Lemma 3.

Given a binary partition Pb = {A1, A2}, define cPb : ∪∞j=14j → R, where 4j

is the j simplex, as in the statement of Lemma 9, and suppose C satisfies Axiom 1,

Axiom 2, and Axiom 3. Remember C(Pb, µ) = cPb(µ(A1), µ(A2)) for all probability

measures µ so Lemma 9 tells us C(Pb, p, 1−p) = C(Pb, 1−p, p), for each p ∈ [0, 1],

and we thus only wish to show cPb(p, 1− p) is continuous for p ∈ [0, 1]. Suppose not,

and cPb(p, 1− p) is discontinuous at some point p = pd ∈ [0, 1]. Since cPb(p, 1− p) =

cPb(1− p, p), it is without loss to assume pd ∈ [0, 1
2
].

First notice that cPb(p, 1 − p) is discontinuous at p = 0 iff it is discontinuous

at a p̃ ∈ (0, 1
2
], because Axiom 2 tells us that for small δ > 0: cPb(δ,

1
2
− δ

2
, 1

2
− δ

2
) =

cPb(δ, 1− δ) + (1− δ)cPb(1/2, 1/2) = cPb(
1
2
− δ

2
, 1

2
+ δ

2
) + (1

2
+ δ

2
)cPb(

2δ
1+δ

, 1−δ
1+δ

).

Further, if cPb(p, 1 − p) is discontinuous at p = 1
2

then it is discontinuous at

p ∈ {1
4
, 1

3
} because Axiom 2 tells us that for small δ > 0: cPb(

1
2
− δ, 1

3
+ 2δ

3
, 1

6
+ δ

3
) =

cPb(
1
2
− δ, 1

2
+ δ) + (1

2
+ δ)cPb(

1
3
, 2

3
) = cPb(

1
3

+ 2δ
3
, 2

3
− 2δ

3
) + (2

3
− 2δ

3
)cPb((

1
6

+ δ
3
)/(2

3
−

2δ
3

), (1
2
− δ)/(2

3
− 2δ

3
)). It is thus without loss to assume cPb(p, 1− p) is discontinuous

at p = 0, and pd ∈ (0, 1
2
). Axiom 3 then requires there is pc ∈ (0, 1/2] such that

cPb(p, 1 − p) is continuous at p = pc. But this is not possible, and we can reach a

contradiction. Pick (p1, p2, p2, p4) such that they sum to one and:

p1 + p2 = pd,
p1

p1 + p2

= pc, and
p4

p3 + p4

= pc,

so that p1 + p4 = pc,
p1

p1 + p4

= pd, and
p2

p2 + p3

= pd.

Then notice Lemma 10 tells us:

cPb(p1, p2, p3, p4)
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= cPb(p1+p2, p3+p4)+(p1+p2)cPb
( p1

p1 + p2

,
p2

p1 + p2

)
+(p3+p4)cPb

( p3

p3 + p4

,
p4

p3 + p4

)
= cPb(p1+p4, p2+p3)+(p1+p4)cPb

( p1

p1 + p4

,
p4

p1 + p4

)
+(p2+p3)cPb

( p2

p2 + p3

,
p3

p2 + p3

)
.

We begin by pointing out that cPb is discontinuous from both sides at pd, since we

could increase p1 and p3 by a small δ > 0, and decrease p2 and p4 by the same

δ. As δ is taken to zero, continuity at pc implies the change in cPb(p1 + p2, p3 +

p4) + (p1 + p2)cPb
( p1

p1 + p2

,
p2

p1 + p2

)
+ (p3 + p4)cPb

( p3

p3 + p4

,
p4

p3 + p4

)
goes to zero,

so discontinuities at either side of pd must offset each other so the change in cPb(p1 +

p4, p2 + p3) + (p1 + p4)cPb
( p1

p1 + p4

,
p4

p1 + p4

)
+ (p2 + p3)cPb

( p2

p2 + p3

,
p3

p2 + p3

)
goes

to zero.

Next, we show there must be a pd ∈ (0, 1
2
) where cPb(p, 1− p) drops at p = pd

(∃pd ∈ (0, 1
2
), ε > 0 such that ∀δ > 0 there is p such that p ∈ (pd, pd + δ) and

cPb(pd, 1− pd)− cPb(p, 1− p) ≥ ε). If not, since cPb is discontinuous from both sides

at pd, there is an ε > 0 such that ∀δ > 0, ∃p ∈ (pd, pd + δ) such that cPb(p, 1− p)−

cPb(pd, 1 − pd) ≥ ε. Now, fix particular ε, δ > 0 such that if p ∈ (pd, pd + δ) then

cPb(p, 1− p)− cPb(pd, 1− pd) ∈ [4ε
5
, 5ε

4
]. Given this ε, pick δ̃ > 0 such that δ̃ < δ, and

if |p−pc| ≤ δ̃
pd

), then |cPb(p, 1−p)− cPb(pc, 1−pc)| ≤ ε
1000

, and δ̃cPb(p, 1−p) ≤ ε
1000

.

Now, pick δ̂ > 0 such that δ̂
pc
≤ δ̃. If we think about increasing p1 by δ̂, and decreasing

p4 by δ̂, keeping p2 and p3 constant (where (p1, p2, p2, p4) are picked as in the previous

paragraph), then it is evident a contradiction has been created since, using Lemma

10 as in the previous paragraph:

cPb(pd, 1− pd)− cPb(pd + δ̂, 1− pd − δ̂)

+pdcPb(pc, 1− pc)− (pd + δ̂)cPb
( p1 + δ̂

p1 + δ̂ + p2

,
p2

p1 + δ̂ + p2

)

+(1− pd)cPb(1− pc, pc)− (1− pd − δ̂)cPb
( p3

p3 + p4 − δ̂
,

p4 − δ̂
p3 + p4 − δ̂

)
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= pc

(
cPb(pd, 1− pd)− cPb

(
pd +

δ̂

pc
, 1− pd −

δ̂

pc

))
,

so,

cPb(pd, 1−pd)−cPb(pd+δ̂, 1−pd−δ̂)−
ε

250
≤ pc

(
cPb(pd, 1−pd)−cPb

(
pd+

δ̂

pc
, 1−pd−

δ̂

pc

))

≤ cPb(pd, 1− pd)− cPb(pd + δ̂, 1− pd − δ̂) +
ε

250

=⇒ 4ε

5
− ε

250
≤ pc

(
cPb
(
pd +

δ̂

pc
, 1− pd −

δ̂

pc

)
− cPb(pd, 1− pd)

)
≤ 5ε

4
+

ε

250
,

but this is not possible since pc ≤ 1
2
, so then we would require:

cPb
(
pd +

δ̂

pc
, 1− pd −

δ̂

pc

)
− cPb(pd, 1− pd) ≥

398ε

250
>

5ε

4
.

Thus, ∃pd ∈ (0, 1
2
), and ε > 0, such that ∀δ > 0, there is p such that p ∈

(pd, pd + δ) and cPb(pd, 1 − pd) − cPb(p, 1 − p) ≥ ε. Fix such a pd and ε, letting

cPb(pd, 1 − pd) = k > 0. We next show that the x, such that ∀δ > 0 there is

p ∈ (pd, pd + δ) such that cPb(pd, 1 − pd) − cPb(p, 1 − p) ≥ x, is unbounded, which

causes a contradiction, since it is then true for some x > k, and cPb(p, 1− p) cannot

be negative. If this were not true, then there would be x > 0 such that ∀δ > 0 there is

p ∈ (pd, pd+δ) such that cPb(pd, 1−pd)−cPb(p, 1−p) ≥ x, but ∃δ > 0 such that @p ∈

(pd, pd+δ) such that cPb(pd, 1−pd)−cPb(p, 1−p) ≥ 3x
2

. Pick any small δ > 0 such that

if |p− pc| ≤ δ
pd

, then |cPb(p, 1− p)− cPb(pc, 1− pc)| ≤ x
1000

, and δcPb(p, 1− p) ≤ x
1000

.

Now, pick δ̂ > 0 such that δ̂
pc
< δ, and cPb(pd, 1− pd)− cPb(pd + δ̂, 1− pd − δ̂) ≥ x.

Now consider increasing p1 by δ̂, and decreasing p4 by δ̂, keeping p2 and p3 constant

(where (p1, p2, p2, p4) are picked as above in this proof). Then, using Lemma 10 as

in the previous paragraphs:

cPb(pd, 1− pd)− cPb
(
pd + δ̂, 1− pd − δ̂

)
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+pdcPb(pc, 1− pc)−
(
pd + δ̂

)
cPb
( p1 + δ̂

p1 + δ̂ + p2

,
p2

p1 + δ̂ + p2

)

+(1− pd)cPb(1− pc, pc)− (1− pd −
δ̂

pc
)cPb

( p3

p3 + p4 − δ̂
,

p4 − δ̂
p3 + p4 − δ̂

)

= pc

(
cPb(pd, 1− pd)− cPb

(
pd +

δ̂

pc
, 1− pd −

δ̂

pc

))
,

=⇒ pc

(
cPb(pd, 1−pd)−cPb

(
pd+

δ̂

pc
, 1−pd−

δ̂

pc

))
≥ cPb(pd, 1−pd)−cPb

(
pd+δ̂, 1−pd−δ̂

)
− x

250
,

but then, since pc ≤ 1
2
:

cPb(pd, 1− pd)− cPb
(
pd +

δ̂

pc
, 1− pd −

δ̂

pc

))
≥ 2x− x

125
>

3x

2
.

Since this strategy can be employed for any arbitrarily small δ > 0, our contradiction

is achieved, and discontinuity at a point would imply ∃p ∈ [0, 1] such that cPb(p, 1−

p) < 0, and thus cPb(p, 1− p) must be continuous ∀p ∈ [0, 1].�

Proof of Lemma 4.

Given a binary partition Pb = {A1, A2}, define cPb : ∪∞j=14j → R, where 4j is

the j simplex, as in the statement of Lemma 9, and suppose C satisfies Axiom 1, Ax-

iom 2, and Axiom 3. Remember C(Pb, µ) = cPb(µ(A1), µ(A2)) = cPb(µ(A2), µ(A1))

for all probability measures µ, so we only need to show cPb(p, 1−p) is non-decreasing

for small increases to p ∈ (0, 1/2) since Lemma 3 shows cPb(p, 1 − p) is continuous,

and Lemma 9 cPb(0, 1) = 0, and so before each p where cPb(p, 1 − p) is decreasing

in p, there must be a smaller p where cPb(p, 1 − p) is increasing in p. We proceed

by assuming there is a pd ∈ (0, 1/2) such that cPb(pd, 1− pd) is decreasing for small

increases in pd, and create a contradiction. Notice that then there must be infinitely

many p ∈ (0, 1/2) where cPb(p, 1 − p) decreases for small increases to p because if

pd ∈ (0, 1/2) is such that cPb(pd, 1 − pd) decreases for small increases to pd we can
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pick (p1, p2, p2, p4) such that:

p1 + p2 = pd,
p1

p1 + p2

= pd,
p3

p3 + p4

= pd, so that
p1

p1 + p4

< pd,

and then notice Lemma 10 tells us:

cPb(p1, p2, p3, p4)

= cPb(p1+p2, p3+p4)+(p1+p2)cPb
( p1

p1 + p2

,
p2

p1 + p2

)
+(p3+p4)cPb

( p3

p3 + p4

,
p4

p3 + p4

)
= cPb(p1+p4, p2+p3)+(p1+p4)cPb

( p1

p1 + p4

,
p4

p1 + p4

)
+(p2+p3)cPb

( p2

p2 + p3

,
p3

p2 + p3

)
,

and then consider increasing p1 a small amount and decreasing p4 by the same small

amount, while keeping p2 and p3 constant, and notice this implies cPb(p, 1 − p) de-

creases for small increases to p = p1/(p1 + p4) < pd. This all means cPb(p, 1− p) has

dense local maxima and minima for p close to zero.

Next we show that the largest reduction in cPb(p, 1 − p) from an increase in p

of any particular small ε > 0 must be at achieved at a p > 1/4. Pick p1 ≤ 1/4 such

that cPb is decreasing there for small increases in p1. Given such a small ε > 0, pick

p2 and p3 so that p1 + p2 + p3 = 1, and so:

p3

p2 + p3

=
p2 − ε

p2 − ε+ p3

.

Since ε is small and p1 ≤ 1/4, we know p1 < p3 < p2. Now consider increasing p1 by

ε and decreasing p2 by ε. Pick k ≥ 0 so:

k = cPb
( p3

p2 + p3

, 1− p3

p2 + p3

)
= cPb

( p2 − ε
p2 − ε+ p3

, 1− p2 − ε
p2 − ε+ p3

)
.
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Lemma 10 tells us:

cPb(p1, p2, p3) = cPb(p1, 1− p1) + (1− p1)cPb
( p2

p2 + p3

,
p3

p2 + p3

)

= cPb(p3, 1− p3) + (1− p3)cPb
( p1

p1 + p2

,
p2

p1 + p2

)
.

Thus:

0 > cPb(p1 + ε, 1− (p1 + ε))− cPb(p1, 1− p1)− εk

= (1− p3)

(
cPb
( p1 + ε

p1 + p2

,
p2 − ε
p1 + p2

)
− cPb

( p1

p1 + p2

,
p2

p1 + p2

))
,

so,

0 >
cPb(p1 + ε, 1− (p1 + ε))− cPb(p1, 1− p1)

ε

≥
cPb
( p1

p1 + p2

+
ε

p1 + p2

,
p2

p1 + p2

− ε

p1 + p2

)
− cPb

( p1

p1 + p2

,
p2

p1 + p2

)
ε

p1 + p2

Thus, at
p1

p1 + p2

> p1,

cPb is averaging a weakly steeper descent over a longer range, and thus there must be

a point between
p1

p1 + p2

and
p1 + ε

p1 + p2

,

where the decrease of cPb over the next ε is as large as the decrease cPb(p1 + ε, 1 −

(p1 + ε)) − cPb(p1, 1 − p1). When is p1 close to 1/4, if we pick p2 and p3 as above,

keeping our small ε in mind, we have:

p1

p1 + p2

>
1

4
.

cPb is a continuous function, so for all small ε > 0, f(p) = cPb(p + ε, 1 − (p + ε)) −

cPb(p, 1 − p), defined for compact domain p ∈ [0, 1
2
− ε], is continuous, and has a
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minimizer (perhaps not unique) ps(ε) ∈ (1/4, 1/2− ε), given what we just showed.

We are now ready to create out desired contradiction. We begin by finding a

local maximum, denote it pm, such that pm ∈ (0, 1/1000), and an ε ∈ (0, 1/1000),

such that if δ ∈ [0, ε], then:

cPb(pm, 1− pm) > cPb(pm + 4δ, 1− (pm + 4δ)).

Now let p2 = ps(ε) + ε > 1/4 + ε, and let:

p3 =
p2

1− pm
pm < pm, so that

p3

p2 + p3

= pm,

and finally let p1 = 1− p2 − p3, noticing p1 > 1/4 so that:

p3

p1 + p3

+
ε

p1 + p3 + ε
<

1

2
.

Lemma 10 tells us:

cPb(p1, p2, p3) = cPb(p1, 1− p1) + (1− p1)cPb
( p2

p2 + p3

,
p3

p2 + p3

)

= cPb(p2, 1− p2) + (1− p2)cPb
( p1

p1 + p3

,
p3

p1 + p3

)
.

This means, since p2 + p3 > 1/4, if we increase p3 by ε, and decrease p2 by ε, holding

p1 constant:

0 > (1− p1)
(
cPb
( p3 + ε

p2 + p3

,
p2 − ε
p2 + p3

)− cPb
( p3

p2 + p3

,
p2

p2 + p3

))
= cPb(p2 − ε, 1− (p2 − ε))− cPb(p2, 1− p2)

+(p1 + p3 + ε)cPb
( p3 + ε

p1 + p3 + ε
,

p1

p1 + p3 + ε

)
− (p1 + p3)cPb

( p3

p1 + p3

,
p1

p1 + p3

)
≥ cPb(p2 − ε, 1− (p2 − ε))− cPb(p2, 1− p2)
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+(p1 + p3 + ε)
(
cPb
( p3 + ε

p1 + p3 + ε
,

p1

p1 + p3 + ε

)
− cPb

( p3

p1 + p3

,
p1

p1 + p3

))
= cPb(p2 − ε, 1− (p2 − ε))− cPb(p2, 1− p2)

+(p1 +p3 +ε)
(
cPb
( p3

p1 + p3 + ε
+

ε

p1 + p3 + ε
,

p1

p1 + p3 + ε

)
−cPb

( p3

p1 + p3

,
p1

p1 + p3

))
.

This implies:

0 >
cPb(ps(ε) + ε, 1− (ps(ε) + ε))− cPb(ps(ε), 1− ps(ε))

ε

>

cPb
( p3

p1 + p3 + ε
+

ε

p1 + p3 + ε
,

p1

p1 + p3 + ε

)
− cPb

( p3

p1 + p3

,
p1

p1 + p3

)
ε

p1 + p3 + ε

.

But remember, the way we picked ps(ε) implies for all δ ∈
[
ε,

ε

p1 + p3 + ε

]
:

cPb(ps(ε) + ε, 1− (ps(ε) + ε))− cPb(ps(ε), 1− ps(ε))
ε

≤
cPb
( p3

p1 + p3

+ δ,
p1

p1 + p3

− δ
)
− cPb

( p3

p1 + p3

,
p1

p1 + p3

)
δ

,

so letting δ =
ε

p1 + p3 + ε

p1

p1 + p3

∈
[
ε,

ε

p1 + p3 + ε

]
:

cPb(ps(ε) + ε, 1− (ps(ε) + ε))− cPb(ps(ε), 1− ps(ε))
ε

≤
cPb
( p3

p1 + p3

+
ε

p1 + p3 + ε

p1

p1 + p3

,
p1

p1 + p3

− ε

p1 + p3 + ε

p1

p1 + p3

)
− cPb

( p3

p1 + p3

,
p1

p1 + p3

)
ε

p1 + p3 + ε

p1

p1 + p3

=

cPb
( p3

p1 + p3 + ε
+

ε

p1 + p3 + ε
,

p1 + ε

p1 + p3 + ε
− ε

p1 + p3 + ε

)
− cPb

( p3

p1 + p3

,
p1

p1 + p3

)
ε

p1 + p3 + ε

p1

p1 + p3
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<

cPb
( p3

p1 + p3 + ε
+

ε

p1 + p3 + ε
,

p1

p1 + p3 + ε

)
− cPb

( p3

p1 + p3

,
p1

p1 + p3

)
ε

p1 + p3 + ε

.�

Proof of Lemma 5. Given learning strategy invariant partition P = {A1, . . . , Am},

if m ≥ 3, pick any binary partition Pb coarser than P , and if m = 2 take Pb = P ,

and with this Pb, define cPb : ∪∞j=14j → R, where 4j is the j simplex, as in the

statement of Lemma 9, and suppose C satisfies Axiom 1, Axiom 2, and Axiom 3, and

Axiom 4. By definition of cPb , C(P , µ) = cPb(µ(A1), . . . , µ(Am)). Define h so for

n ∈ N, h(n) ≡ cPb(1/n, . . . , 1/n, 0). Notice that Axiom 4 impliesh(2) > h(1) = 0,

and in general h(n) > 0 if n > 1. It is also easy to show h(n+ 1) ≥ h(n) for all n ≥ 2

using Lemma 10 and Lemma 4:

h(n) = cPb(1/n, . . . , 1/n, 0)

= cPb(1/n, . . . , 1/n) +
( 1

n

)
cPb
(1/n

1/n
,

0

1/n

)

≤ cPb(1/n, . . . , 1/n) +
( 1

n

)
cPb
( 1
n(n+1)

1
n

,

1
n2(n+1)

1
n

)
= cPb(1/n, . . . , 1/n, 1/n, 1/(n+1), 1/(n(n+1))) = cPb(1/n, . . . , 1/n, 1/(n+1), 1/n, 1/(n(n+1)))

= cPb(1/n, . . . , 1/n, 1/(n+ 1), (1/n) + 1/(n(n+ 1))) +
n+ 2

n(n+ 1)
cPb
( 1

n
n+2

n(n+1)

,

1
n(n+1)

n+2
n(n+1)

)

≤ cPb(1/n, . . . , 1/n, 1/(n+ 1), (1/n) + 1/(n(n+ 1))) +
n+ 2

n(n+ 1)
cPb
( 1

n+1
n+2

n(n+1)

,

2
n(n+1)

n+2
n(n+1)

)
≤ · · · ≤ cPb(1/(n+ 1), . . . , 1/(n+ 1), 0) = h(n+ 1)

The rest of the proof follows the work of Shannon (1948) closely. Notice h(sr) =

r · h(s), which is reminiscent of logarithms, and is some nice foreshadowing for the

rest of the proof. Given arbitrarily small ε > 0, and integers s > 1 and t > 1, pick n
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and r so that 2/n < ε, and sr ≤ tn < sr+1. So:

r log(s) ≤ n log(t) < (r + 1) log(s) =⇒ r

n
≤ log(t)

log(s)
<
r + 1

n
=⇒ | r

n
− log(t)

log(s)
| < 1

n
.

The work we did above then tells then tells us:

h(sr) ≤ h(tn) ≤ h(sr+1) =⇒ r · h(s) ≤ n · h(t) ≤ (r + 1)h(s)

=⇒ r

n
≤ h(t)

h(s)
≤ r + 1

n
=⇒ | r

n
− h(t)

h(s)
| ≤ 1

n
.

All of this tells us:

|h(t)

h(s)
− log(t)

log(s)
| < ε,

which can be shown to be true ∀ε > 0, and thus h(n) = λ log(n), where λ must be a

positive constant to satisfy Axiom 4.

Let pk = µ(Ak) for each Ak ∈ P . Suppose, for now, that each pk is a rational

number. Then there exists integers n1, . . . , nm, such that for all k ∈ {1, . . . , m} we

have:

pk =
nk
m∑
j=1

nj

.

Our interpretation is that we have a uniform distribution over
∑
j

nj equally likely

states, and the chance of the event which happens with probability pk is the chance

of one of the nk associated states occurring. Then using the definition of learning

strategy invariance:

cPb

(
1∑

j

nj
, . . . ,

1∑
j

nj

)
= h

(
m∑
j=1

nj

)
= λ log

(
m∑
j=1

nj

)
= cPb(p1, . . . , pm)+

m∑
j=1

pjλi log(nj),

=⇒ cPb(p1, . . . , pm) = λ log

(
m∑
j=1

nj

)
−

m∑
j=1

pjλ log(nj)
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=
m∑
k=1

(
pkλ log

(
m∑
j=1

nj

))
−

m∑
j=1

pjλ log(nj)

= −
m∑
k=1

pkλ log

(
nk∑
j

nj

)
= −λ

m∑
k=1

pk log(pk) = λH(P , µ),

where H is defined as in equation (1). If any of the pi are irrational, then the density

of the rationals and Lemma 3 can be used to get the same result. Thus:

C(P , µ) = cPb(µ(A1), . . . , µ(Am)) = λH(P , µ).�

Mutual Information

Consider two partitions P1 and P2. Given some probability measure µ, define

the mutual information between P1 and P2, denoted I(P1, P2, µ), to be:

I(P1, P2, µ) =
∑
a1∈P1

∑
a2∈P2

µ(a1 ∩ a2) log
( µ(a1 ∩ a2)

µ(a1)µ(a2)

)

Then, as is well known in the literature:

H(×{Pi}2
i=1, µ) = H(P1, µ) +H(P2, µ)− I(P1, P2, µ)

= E[H(P1, µ(·|P2(ω)))]

=

H(P1, µ)−I(P1,P2, µ)

+ I(P1, P2, µ) + E[H(P2, µ(·|P1(ω)))]

=

H(P2, µ)−I(P1,P2, µ)

= H(P1, µ) + E[H(P2, µ(·|P1(ω)))] = H(P2, µ) + E[H(P1, µ(·|P2(ω)))]

and note that the strict concavity of H means that I(P1, P2, µ) ≥ 0.

Mutual information can be thought of as the information that is double counted

if one were to compute the total uncertainty about the outcome of P1 and P2 by simply

adding up the uncertainty about the outcome of P1 and the uncertainty about the

outcome of P2. When the mutual information increases and the individual uncertainty
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about the outcome of P1 and the outcome of P2 are held constant the total uncertainty

about the outcome of P1 and P2 decreases because the amount that remains to be

learned after observing one of the outcomes of either P1 or P2 decreases.

Mutual information can be acquired by learning the value of either P1 or P2.

When we think of an agent that is trying to acquire information in an efficient fashion,

we should always envision them acquiring mutual information from the cheapest

source, by learning about whichever of P1 and P2 has the lowest associated multiplier.

This logic is formalized by the result in Lemma 11.

Lemma 11. If C satisfies our five axioms, and Sb = {Pb1, . . . , Pbi , Pbi+1, . . . , Pbm}

and S̃b = {Pb1, . . . , Pbi+1, Pbi , . . . , Pbm} are two binary learning strategies such that

Pbi and Pbi+1’s associated multipliers are ordered λi ≥ λi+1, then for all probability

measures µ:

C(Sb, µ) ≥ C(S̃b, µ).

Proof. For all realizations of ∩i−1
j=1Pbj (ω):

C((Pbi , Pbi+1), µ(·|∩i−1
j=1Pbj (ω))) = λiH(Pbi , µ(·|∩i−1

j=1Pbj (ω)))+λi+1E[H(Pbi+1, µ(·|∩ij=1Pbj (ω)))]

= λiH(Pbi , µ(·|∩i−1
j=1Pbj (ω)))+λi+1

(
H(Pbi+1, µ(·|∩i−1

j=1Pbj (ω)))−I(Pbi , Pbi+1, µ(·|∩i−1
j=1Pbj (ω))

)
≥ λi

(
H(Pbi , µ(·|∩i−1

j=1Pbj (ω)))−I(Pbi , Pbi+1, µ(·|∩i−1
j=1Pbj (ω))

)
+λi+1H(Pbi+1, µ(·|∩i−1

j=1Pbj (ω)))

= λi+1H(Pbi+1, µ(·| ∩i−1
j=1 Pbj (ω))) + λiE[H(Pbi , µ(·|(∩i−1

j=1Pbj (ω)) ∩ Pbi+1(ω)))]

= C((Pbi+1, Pbi ), µ(·| ∩i−1
j=1 Pbj (ω))).

It is thus always weakly cheaper in expectation to have Pi+1 before Pi since

switching their order does not change the expected cost of implementing the binary

partitions before or after the pair.�

Proof of Theorem 1. Given some probability measure µ, suppose Sb is a binary
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learning strategy such that σ(Sb) = F , and

C(Sb, µ) = min
Sb∈Sb(Ω)

C(Sb, µ).

We know such binary learning strategy exists whenever C satisfies Axiom 5. We may

assume that if Pbi and Pbi+1 are in Sb with associated multipliers λi and λi+1, that

λi ≤ λi+1. If not, then their order can be reversed and the resultant strategy is weakly

less costly, as is shown in Lemma 11.

If for any j ∈ {1, . . . , M}, multiplier λj’s associated binary partitions Pbi , . . . ,Pbi+k
in Sb are such that σ(Pbi , . . . ,Pbi+k) 6= σ(Pbλj), then there are binary partitions

Pbm+1, . . . , Pbm+l with associated multiplier λj, such that σ(Pbi , . . . ,Pbi+k, Pm+1, . . . , Pbm+l) =

σ(Pbλj). P
b
m+1, . . . , Pbm+l can be appended to the end of Sb, and the resultant strategy

S̃b is also such that:

C(S̃b, µ) = min
Sb∈Sb(Ω)

C(S, µ).

This is true since each appended binary partition has an expected cost of zero, since

σ(Sb) = F . Lemma 11 then implies that if we reorder S̃b so that the new learning

strategy Ŝ’s binary partitions are ordered by their multipliers, then:

C(Ŝb, µ) = min
Sb∈Sb(Ω)

C(S, µ).

We can thus assume that Sb is such that for any j ∈ {1, . . . , M} multiplier λj’s asso-

ciated binary partitions Pbi , . . . ,Pbi+k in Sb are such that σ(Pbi , . . . ,Pbi+k) = σ(Pλj).

For each j ∈ {1, . . . , M} we thus have that if all binary partitions Pbi , . . . ,Pbi+k
in Sb with multiplier λj are taken together that:

E[C((Pbi , . . . ,Pbi+k), µ(·| ∩i−1
t=1 Pbt (ω)))] = E

[ i+k∑
l=i

λjH(Pbl , µ(·| ∩l−1
t=1 Pbt (ω)))

]

= E[λjH(Pλj , µ(·| ∩i−1
t=1 Pbt (ω)))] = E[λjH(Pλj , µ(·| ∩j−1

t=1 Pλt(ω)))].

59



Where the second equality holds due to the properties of H. This procedure can be

carried out for all µ. Thus:

C(Sb, µ) = min
Sb∈Sb(Ω)

C(S, µ).

= λ1H
(
Pλ1 , µ

)
+E

[
λ2H

(
Pλ2 , µ(·|Pλ1(ω))

)
+· · ·+λMH

(
PλM , µ(·|∩M−1

i=1 Pλi(ω))
)]
.�

Appendix 2

Proof of Lemma 6. In Lemma 6, we show that we can rewrite the agent’s prob-

lem in terms of selecting the choice probabilities described in equations (4), (5), and

(6). To do this, we first establish several other lemmas. In Lemma 12, we show

that: min
S∈S(Ω)

C(S, µ) is a strictly concave function of µ. This is a commonly known

property of Shannon Entropy, but needs to be established for in our context. This

implies that C is strictly convex. We then show, in Lemma 13, that, given the con-

vexity of C, any selected action is associated with a particular posterior probability.

This is desirable because it allows us to reduce the strategies considered to recom-

mendation strategies. That is, we are able to focus on signals that are simply a

recommendation of an option. In Lemma 14, we show that we may rewrite the cost

function in terms of the choice probabilities in equations (4), (5), and (6).

Lemma 12. If C satisfies all five axioms then min
S∈S(Ω)

C(S, µ) is a strictly concave

function of µ. Namely, if there are probability measures µa, and µb, such that µ =

αµa + (1− α)µb for some α ∈ (0, 1), and µa 6= µb, then:

min
S∈S(Ω)

C(S, µ) > α
(

min
S∈S(Ω)

C(S, µa)
)

+ (1− α)
(

min
S∈S(Ω)

C(S, µb)
)
.

Proof. For each such µa, µb, α ∈ (0, 1), and µ, the strict concavity of Shannon
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Entropy (Matějka & McKay, 2015; Caplin et al., 2017) implies:

H(Pλ1 , µ) ≥ αH(Pλ1 , µa) + (1− α)H(Pλ1 , µb).

Define a random variable X that takes value 1 with chance α, and takes value

0 with chance 1− α, so that a draw from µ is equivalent to a draw of X, and then a

draw according to the probability measure Xµa+(1−X)µb. For each i ∈ {2, . . . , M}

and probability measure ν : Pλi × {0, 1} → [0, 1], define:

H(X, ν) =
∑
X

ν(x) log(ν(x)), H(Pλi , X, ν) =
∑
A∈Pλi

∑
X

ν(A, x) log(ν(A, x)).

Then, for each such µa, µb, α ∈ (0, 1), µ, and i ∈ {2, . . . , M}, the properties of

Shannon Entropy tell us:

E
[
H(Pλi , X, µ(·|∩i−1

j=1Pλj(ω)))
]

= E
[
H(Pλi , µ(·|∩i−1

j=1Pλj(ω)))
]
+E
[
H(X, µ(·|∩ij=1Pλj(ω)))

]
,

E
[
H(Pλi , X, µ(·|∩i−1

j=1Pλj(ω)))
]

= E
[
H(X, µ(·|∩i−1

j=1Pλj(ω)))
]
+E
[
H(Pλi , µ(·|∩i−1

j=1Pλj(ω), X))
]
,

=⇒ E
[
H(Pλi , µ(·| ∩i−1

j=1 Pλj(ω)))
]

= E
[
H(Pλi , µ(·| ∩i−1

j=1 Pλj(ω), X))
]

+E
[
H(X, µ(·| ∩i−1

j=1 Pλj(ω)))
]
− E

[
H(X, µ(·| ∩ij=1 Pλj(ω)))

]
≥ E

[
H(Pλi , µ(·| ∩i−1

j=1 Pλj(ω), X))
]

= E
[
αH(Pλi , µa(·| ∩i−1

j=1 Pλj(ω))) + (1− α)H(Pλi , µb(·| ∩i−1
j=1 Pλj(ω)))

]
.

The above inequality is strict for at least one i ∈ {2, . . . , M} if the inequality from

the previous paragraph is not strict, since µa 6= µb and H is strictly concave. The

desired result thus follows from Theorem 1.�

Lemma 13. If action n ∈ N is selected with positive probability, Pr(n) > 0, as the

outcome of information strategy F with is a solution to (2) subject to (3), then there
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exists a posterior belief Bn such that F (ω|s) = Bn with probability one whenever n

is selected.

Proof. It is impossible that there are two distinct sets of signals S1
n and S2

n which are

observed with strictly positive probability, both of which lead to the selection of n, and

induce different posteriors F (ω|s1) 6= F (ω|s2) for s1 ∈ S1
n and s2 ∈ S2

n. min
S∈S(Ω)

C(S, µ)

is strictly concave in µ, as shown in Lemma 12, so the agent could thus do better

by replacing their original information strategy F with a new information strategy F̃

which is identical to F except the signals in S1
n and S2

n are replaced by s0: ∀ω ∈ Ω let

F̃ (s0|ω) =
∫

s∈S1
n

F (s|ω) +
∫

s∈S2
n

F (s|ω). This is true because payoffs are linear, and the

law of iterated expectations implies the agent still picks n after s0 is realized since

∀ ν ∈ N :

EF̃ [vn(ω)|s0] =

∑
ω∈Ω

∫
s∈S1

n

F (s|ω)µ(ω)

∑
ω∈Ω

( ∫
s∈S1

n

F (s|ω)µ(ω) +
∫

s∈S2
n

F (s|ω)µ(ω)

)EF [vn(ω)|s ∈ S1
n]

+

∑
ω∈Ω

∫
s∈S2

n

F (s|ω)µ(ω)

∑
ω∈Ω

( ∫
s∈S2

n

F (s|ω)µ(ω) +
∫

s∈S2
n

F (s|ω)µ(ω)

)EF [vn(ω)|s ∈ S2
n]

≥

∑
ω∈Ω

∫
s∈S1

n

F (s|ω)µ(ω)

∑
ω∈Ω

( ∫
s∈S1

n

F (s|ω)µ(ω) +
∫

s∈S2
n

F (s|ω)µ(ω)

)EF [vν(ω)|s ∈ S1
n]

+

∑
ω∈Ω

∫
s∈S2

n

F (s|ω)µ(ω)

∑
ω∈Ω

( ∫
s∈S2

n

F (s|ω)µ(ω) +
∫

s∈S2
n

F (s|ω)µ(ω)

)EF [vν(ω)|s ∈ S2] = EF̃ [vν(ω)|s0].�

.

Lemma 14. The cost of information for a given strategy in equation (2) can be
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written:

C(F (s, ω), µ) = C(P, µ)

=
∑
ω∈Ω

µ(ω)
∑
n∈N

(
− λ1Pr(n) log(Pr(n))− (λ2 − λ1)Pr(n|Pλ1(ω)) log(Pr(n|Pλ1(ω)))

−(λ3 − λ2)Pr(n|Pλ1(ω) ∩ Pλ2(ω)) log(Pr(n|Pλ1(ω) ∩ Pλ2(ω)))

− . . .−(λM−λM−1)Pr(n|∩M−1
i=1 Pλi(ω)) log(Pr(n|∩M−1

i=1 Pλi(ω)))+λMPr(n|ω) log(Pr(n|ω))
)
.

Proof. Let Ps = (S1, . . . , Sn) denote a partition of the space of signals the agent

may receive. We showed in Lemma 13 that for each Si if s in Si then with probability

one s results in a particular posterior. We then have:

C(F (s, ω), µ) = E[ min
S∈S(Ω)

C(S, µ)− min
S∈S(Ω)

C(S, µ(·|s))]

= E
[
λ1

(
H(Pλ1 , µ)−H(Pλ1 , µ(·|s))

)
(11)

+ . . . + λM

(
H(PλM , µ(·| ∩M−1

i=1 Pλi(ω)))−H(PλM , µ(·| ∩M−1
i=1 Pλi(ω), s))

)]

= E
[
λ1

(
H(Ps, F (s))−H(Ps, F (s|Pλ1(ω)))

)
(12)

+ . . . + λM

(
H(Ps, F (s| ∩M−1

i=1 Pλi(ω)))−H(Ps, F (s| ∩Mi=1 Pλi(ω)))
)]

= E
[
λ1H(Ps, F (s)) + (λ2 − λ1)H(Ps, F (s|Pλ1(ω)))

+ . . . + (λM − λM−1)H(Ps, F (s| ∩M−1
i=1 Pλi(ω)))− λMH(Ps, F (s| ∩Mi=1 Pλi(ω)))

]

=
∑
ω∈Ω

µ(ω)
∑
n∈N

(
− λ1Pr(n) log(Pr(n))− (λ2 − λ1)Pr(n|Pλ1(ω)) log(Pr(n|Pλ1(ω)))
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−(λ3 − λ2)Pr(n|Pλ1(ω) ∩ Pλ2(ω)) log(Pr(n|Pλ1(ω) ∩ Pλ2(ω)))

− . . .−(λM−λM−1)Pr(n|∩M−1
i=1 Pλi(ω)) log(Pr(n|∩M−1

i=1 Pλi(ω)))+λMPr(n|ω) log(Pr(n|ω))
)
.

The equality of (11) and (12) follows from the symmetry of mutual information,

defined in Appendix 1. �

We now resume our proof of Lemma 6. First notice that Lemma 14 establishes

C(P, µ). For each n ∈ N , let sn denote a signal in Sn which results in the posterior

generated by signals in Sn with probability one (in Lemma 13 we showed we can do

this). Then notice:

∑
ω∈Ω

∫
s

V (s)F (ds|ω)µ(ω) =
∑
n∈N

V (sn)

∫
s∈Sn

∑
ω∈Ω

F (ds|ω)µ(ω)

=
∑
n∈N

V (sn)Pr(n) =
∑
n∈N

∑
ω∈Ω

vn(ω)F (ω|sn)Pr(n)

=
∑
n∈N

∑
ω∈Ω

vn(ω)Pr(n|ω)µ(ω)

Where the last step follows from the fact that Pr(X|Y )Pr(Y ) = Pr(Y |X)Pr(X).

We now proceed with two proofs by contradiction. First, assume that (F, a) is a

solution to (2) subject to (3), which achieves expected utility U1, and let P be the

choice probabilities induced by it. Assume that P is not a solution to (7) subject to

(8) and (9), and thus there is a P̃ which satisfies (8) and (9) and achieves expected

utility U2 > U1. However, a strategy pairing (F̃ , ã) can be created that generates

P̃. For instance, for each of N distinct signals sn, let ã(F̃ (ω|sn)) ≡ n, and let

F̃ (sn, ω) = P̃r(n|ω)µ(ω) ∀ω so that (3) is satisfied. This is impossible though as

then (F̃ , ã) achieves U2 > U1 and (F, a) cannot have been optimal.

Similarly, assume that P is a solution to (7) subject to (8) and (9), which

achieves expected utility U3 and but is not induced by a solution to 2 subject to (3).
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That is there is a F̃ which satisfies (3) and achieves U4 > U3. This means, however,

that P̃r(n|ω) =
F̃ (sn, ω)

µ(ω)
also achieves U4, which is impossible as P was supposedly

optimal and P̃ satisfies (8) and (9). �

Proof of Theorem 2. The Lagrangian for the above problem can be written:

L =
∑
n∈N

∑
ω∈Ω

vn(ω)Pr(n|ω)µ(ω)−C(P, µ) +
∑
n∈N

∑
ω∈Ω

ξn(ω)Pr(n|ω)µ(ω)

−
∑
ω∈Ω

γ(ω)
(∑
n∈N

Pr(n|ω)− 1
)
µ(ω).

ξn(ω) ≥ 0 are the multipliers for (8), and γ(ω) are the multipliers for (9). If Pr(n) = 0,

then Pr(n|ω) = 0 ∀ω ∈ Ω. If Pr(n|∩mi=1Pλi(ω)) = 0 for some m ∈ {1, . . . , M−1} and

ω, then Pr(n|ω) = 0. If Pr(n) > 0, and Pr(n|∩mi=1Pλi(ω)) > 0, ∀m ∈ {1, . . . , M−1},

then the first order condition with respect to Pr(n|ω) implies:

vn(ω) + λ1(1 + log Pr(n)) + (λ2 − λ1)(1 + log Pr(n|Pλ1(ω)))

+ . . . +(λM−λM−1)(1+log Pr(n|∩M−1
i=1 Pλi(ω)))−λM(1+log Pr(n|ω)) = γ(ω)−ξn(ω)

which then implies Pr(n|ω) > 0 and ξn(ω) = 0, because if not, and Pr(n|ω) = 0, then

since ξn(ω) ≥ 0, equality of the first order condition then necessitates γ(ω) = ∞.

This is impossible, however, since then ∀ ν ∈ N their respective first order conditions

holding necessitates Pr(ν|ω) = 0. This being true ∀ ν ∈ N of course then violates

(9). Thus, the first order condition implies:

Pr(n|ω) = Pr(n)
λ1
λM Pr(n|Pλ1(ω))

λ2−λ1
λM . . . Pr(n| ∩M−1

i=1 Pλi(ω))
λM−λM−1

λM e
vn(ω)
λM e

−γ(ω)
λM

(13)

Plugging (13) into (9), one can solve for γ(ω). Plugging γ(ω) back into (13) achieves

the desired result.�

Proof of Corollary 1. Plug equation (10) into equation (7). �
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Proof of Theorem 3. A fixed effect interpretation of MSSE follows easily from the

optimal choice probabilities described in Theorem 2:

Pr(n|ω) =
Pr(n)

λ1
λM Pr(n|Pλ1(ω))

λ2−λ1
λM . . . Pr(n| ∩M−1

i=1 Pλi(ω))
λM−λM−1

λM e
vn(ω)
λM∑

ν∈N

Pr(ν)
λ1
λM Pr(ν|Pλ1(ω))

λ2−λ1
λM . . . Pr(ν| ∩M−1

i=1 Pλi(ω))
λM−λN−1

λM e
vν (ω)
λM

=
(NPr(n))

λ1
λM (NPr(n|Pλ1(ω)))

λ2−λ1
λM . . . (NPr(n| ∩M−1

i=1 Pλi(ω)))
λM−λM−1

λM e
vn(ω)
λM∑

ν∈N

(NPr(ν))
λ1
λM (NPr(ν|Pλ1(ω)))

λ2−λ1
λM . . . (NPr(ν| ∩M−1

i=1 Pλi(ω)))
λM−λN−1

λM e
vν (ω)
λM

=
e

vn(ω)+λ1α
0
n+(λ2−λ1)α

1
n+···+(λM−λM−1)α

M−1
n

λM∑
ν∈N

e
vν (ω)+λ1α

0
ν+(λ2−λ1)α

1
ν+···+(λM−λM−1)α

M−1
ν

λM

Where α0
ν = log(NPr(ν)), and for m ∈ {1, . . . , M−1} we have αmν = log(NPr(ν|∩mi=1

Pλi(ω))). Normalizing the value of the options by λM , namely letting ṽn = vn(ω)
λM

, and

defining αn appropriately, agent choice behavior described by RI with MSSE can then

be interpreted as a RU model where each option n has perceived value:

un = ṽn + λ1
λM
α0
n + λ2−λ1

λM
α1
n + · · ·+ λM−λM−1

λM
αM−1
n + εn = ṽn + αn + εn

The only kind of RU model consistent with this behavior is one where εn is distributed

iid according to a Gumbel distribution (Train, 2009). �

Appendix 3

The behavior described in Theorem 2 has many intuitive features. It is also

a quite natural extension of the analogous result from Matějka and McKay (2015),

which is described in equation (14). If we assume the agent has prior µ, and all

partitions are learning strategy invariant (the environment studied in Matějka and
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McKay (2015)) and have associated multiplier λ2, then if the agent does optimal

research in state ω ∈ Ω, they select option n from N with probability:

Pr(n|ω) =
Pr(n)e

vn(ω)
λ2∑

ν∈N
Pr(ν)e

vν (ω)
λ2

. (14)

One takeaway from the formula in (14) is that when Shannon Entropy is used

to measure uncertainty the chance of the agent selecting an option n in a particular

state of the world ω is fully determined by the unconditional chances of the options

being selected, Pr(n), and the realized values of the options in that state of the

world. Beyond this takeaway, the formula in (14) also has many intuitive features.

If λ2 grows, which represents an increase in the difficulty of learning, the value of

each option in the realized state becomes less significant for the determination of

the selected option, and the significance of the agent’s prior increases. Similarly, if

λ2 shrinks, the agent’s prior becomes less significant, and the realized values of the

options becomes more significant. If λ2 approaches infinity, the realized values become

insignificant, and the behavior of the agent approaches the behavior of the agent in

the case where learning is impossible: they choose their option based on their prior. If

λ2 approaches zero the unconditional priors become insignificant, and the behavior of

the agent approaches the behavior of the agent in the case where learning is costless:

they choose the option with the highest realized value.

If we instead assume that the agent may also learn through a partition with a

lower multiplier λ1, that can convey information about the realization Pλ1(ω) of a

partition Pλ1 of Ω, then if Pλ1 6= Ω, and the agent does optimal research in state

ω ∈ Ω, they select option n from their set of options N with probability:

Pr(n|ω) =
Pr(n)

λ1
λ2 Pr(n|Pλ1(ω))

λ2−λ1
λ2 e

vn(ω)
λ2∑

ν∈N
Pr(ν)

λ1
λ2 Pr(ν|Pλ1(ω))

λ2−λ1
λ2 e

vν (ω)
λ2

. (15)
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With MSSE, as the formula in (15) indicates, the chance of the agent selecting

an option n in a particular state of the world ω depends not only on the unconditional

chances of the options being selected and the realized values of the options, but also

on the values that the options take in similar states of the world, states that result in

the same realization of Pλ1 . When option n is in general desirable in Pλ1(ω) relative

to the other options, then Pr(n|Pλ1(ω)) is larger, and there may be a high chance of

n being selected, even if Pr(n) is not that large, and vn(ω) is not that high.

The formula in (15) also has many intuitive features. It maintains the intu-

itive comparative statistics for λ2 that the formula in (14) had, and also features

intuitive properties for Pr(n|Pλ1(ω)) and λ1. If observing Pλ1(ω) is completely un-

informative about the value of the options, then it is optimal for the agent to se-

lect Pr(n|Pλ1(ω)) = Pr(n) since min
S∈S(Ω)

C(S, µ) is strictly concave in µ. In this case

Pr(n)
λ1
λ2 Pr(n|Pλ1(ω))

λ2−λ1
λ2 = Pr(n), and behavior is identical to that in (14). If the

cheaper information source contains irrelevant information it is thus ignored, and be-

havior collapses back to the environment described in Matějka and McKay (2015),

as we should desire. If λ1 approaches λ2 (the cheaper information source becomes

close to as expensive as the more expensive information source) then behavior ap-

proaches that described in (14) since Pr(n)
λ1
λ2 Pr(n|Pλ1(ω))

λ2−λ1
λ2 → Pr(n). Thus, if

an insignificantly cheaper information source is introduced behavior is changed in an

insignificant fashion. Again, this seems like a desirable property. If λ1 approaches

zero then the role of the unconditional priors dissipates, and exponent on Pr(n|P(ω))

approaches one, meaning it replaces the unconditional prior from (14). This makes

sense because if λ1 goes to zero it means Pλ1(ω) can essentially be viewed for free,

in which case behavior within each Pλ1(ω) should resemble that in the setting where

there is only one information source with multiplier λ2 and a prior of µ(·|Pλ1(ω)).

We can add new partitions with new multipliers and the description of behavior

in Theorem 2 maintains the intuitive properties described in the paragraphs above.

RI with MSSE is thus a very natural extension of RI with Shannon Entropy.
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Hébert, B., & Woodford, M. (2017). Rational inattention and sequential information

sampling (Tech. Rep.). National Bureau of Economic Research.

Huettner, F., Boyacı, T., & Akçay, Y. (2019). Consumer choice under limited atten-

69



tion when alternatives have different information costs. Operations Research.
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